首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diastereomerically pure P-stereogenic bis(phosphinimine) ligands 4,6-(ArN[double bond, length as m-dash]PMePh)(2)dbf [Ar = 4-isopropylphenyl (Pipp): rac-4, meso-4; Ar = 2,6-diisopropylphenyl (Dipp): rac-4a; dbf = dibenzofuran] were synthesised and complexed to zinc using a protonation-alkane elimination strategy. The cationic alkylzinc complexes thus obtained, RZn[4,6-(ArN[double bond, length as m-dash]PMePh)(2)dbf][B(Ar')(4)] [Ar = Pipp, Ar' = C(6)H(3)(CF(3))(2): rac-6 (R = Et), meso-6 (R = Et), rac-7 (R = Me) meso-7 (R = Me); Ar = Dipp: rac-6a (R = Et, Ar' = C(6)H(3)(CF(3))(2)), rac-6b (R = Et, Ar' = C(6)F(5))] were investigated for their competency as initiators for the ring-opening polymerisation of rac-lactide. The formation of polylactide was achieved under relatively mild conditions (40 °C, 2-4 h) and the microstructures of the resulting polymers exhibited a slight heterotactic bias [polymer tacticity (P(r)) = 0.51-0.63].  相似文献   

2.
A new class of homoleptic organoamido rare earth complexes [Ln(L(Me) or L(Et))(3)] (Ln = La, Ce, Nd; L(Me/Et) = p-HC(6)F(4)N(CH(2))(2)NMe(2)/Et(2)) exhibiting (Ar)CF-Ln interactions has been isolated from redox-transmetallation/protolysis (RTP) reactions between the free metals, Hg(C(6)F(5))(2) and L(Me/Et)H in tetrahydrofuran, together with low yields of [Ln(L(Me))(2)F](3) (Ln = La, Ce) or [Nd(L(Et))(2)F](2) species, resulting from C-F activation reactions. The structures of the homoleptic complexes have eight-coordinate Ln metals with two tridentate (N,N',F) amide ligands including (Ar)CF-Ln bonds and either a bidentate (N,F) ligand (Ln = La, Ce, Nd; L(Et)) or a bidentate (N,N') ligand (Ln = Nd; L(Me)), in an unusual case of linkage variation. All (Ar)CF-Ln bond lengths are shorter than or similar to the corresponding Ln-NMe(2)/Et(2) bond lengths. In [Ln(L(Me))(2)F](3) (Ln = La, Ce) complexes, there is a six-membered ring framework with alternating F and Ln atoms and the metal atoms are eight-coordinate with two tridentate (N,N',F) L(Me) ligands, whilst [Nd(L(Et))(2)F](2) is a fluoride-bridged dimer.  相似文献   

3.
Ketimino(phosphino)gold(I) complexes of the type [Au[NR=C(Me)R']L]X (X = ClO4, R = H, L = PPh3, R'=Me (la), Et (2a); L=PAr3 (Ar=C6H4OMe-4), R'=Me (1b), Et (2b); L=PPh3, R=R'=Me (3); X= CF3SO3 (OTf), L=PPh3, R=R'=Me (3'); R=Ar, R'=Me (4)) have been prepared from [Au(acac)L] (acac = acetyl acetonate) and ammonium salts [RNH3]X dissolved in the appropriate ketone MeC(O)R'. Complexes [Au(NH=CMe2)2]X (X = C1O4 (6), OTf (6')) were obtained from solutions of [Au(NH3)2]X in acetone. The reaction of 6 with PPN[AuCl2] or with PhICl2 gave [AuCl(NH=CMe2)] (7) or [AuCI2(NH=CMe2)2]ClO4 (8), respectively. Complex 7 was oxidized with PhICl2 to give [AuCl3(NH=CMe2)] (9). The reaction of [AuCl(tht)] (tht = tetrahydrothiophene), NaClO4, and ammonia in acetone gave [Au(acetonine)2]ClO4 (10) (acetonine = 2,2,4,4,6-pentamethyl-2,3,4,5-tetrahydropyrimidine) which reacted with PPh3 or with PPN[AuCl2] to give [Au(PPh3)(acetonine)]ClO4 (11) or [AuCl(acetonine)] (12), respectively. Complex 11 reacts with [Au(PPh3)(Me2CO)]ClO4 to give [(AuPPh3)2(mu-acetonine)](ClO4)2 (13). The reaction of AgClO4 with acetonine gave [Ag(acetonine)(OClO3)] (14). The crystal structures of [Au(NH2Ar)(PPh3)]OTf (5), 6' and 10 have been determined.  相似文献   

4.
Chen JX  Zhang WH  Tang XY  Ren ZG  Li HX  Zhang Y  Lang JP 《Inorganic chemistry》2006,45(19):7671-7680
The reaction of AuI with 2 equiv of TabHPF6 [TabH = 4-(trimethylammonio)benzenethiol] in the presence of excess Et3N in dimethylformamide (DMF)/MeOH afforded a binuclear gold(I) complex [Au(Tab)2]2I2.2H2O (1). Anion exchange of 1 with NH4PF6 in DMF gave rise to the more soluble complex [Au(Tab)2]2(PF6)2 (2). Treatment of 2 with K[Au(CN)2] produced a tetranuclear gold(I) complex {[(Tab)2Au][Au(CN)2]}2 (3). Analogous reactions of two known mononuclear complexes [Ag(Tab)2](PF6) (4) and [Hg(Tab)2](PF6)2 (5) with 1 or 2 equiv of K[Au(CN)2] generated one Ag2Au2 complex {[(Tab)2Ag][Au(CN)2]}2 (6) and one Au/Hg complex {[Hg(Tab)2][Au(CN)2]2} (7), respectively. Compounds 1-3, 6, and 7 were fully characterized by elemental analysis, IR spectra, UV-vis spectra, 1H NMR, and single-crystal X-ray crystallography. 1 and 2 have a similar [Au(Tab)2]2(2+) dimeric structure in which the two [Au(Tab)2]+ cations are connected via one Au-Au aurophilic interaction. In the structure of 3 or 6, each of the two pairs of [M(Tab)2]+ cation and [Au(CN)2]- anion is held together via ionic interactions to form a {[(Tab)2M][Au(CN)2]} species (M = Au, 3; Ag, 6). Two such species are further connected by one Au-Au aurophilic bonding interaction to form an uncommon Au(4) or Ag2Au2 linear string structure with three ligand-unsupported metal-metal bonds. For 7, the [Hg(Tab)2]2+ dication and the [Au(CN)2]2(2-) dianion are interconnected by the secondary Hg...N(CN) interactions to form a 1D chain structure. The thermal and luminescent properties of 1-3, 6, and 7 in solid state were also investigated.  相似文献   

5.
Sun H  Ritch JS  Hayes PG 《Inorganic chemistry》2011,50(17):8063-8072
The P-stereogenic phosphinimine ligands (dbf)MePhP═NAr (7: Ar = Dipp; 8: Ar = Mes; dbf = dibenzofuran, Dipp = 2,6-diisopropylphenyl, Mes = 2,4,6-trimethylphenyl) were synthesized as racemates via reactions of the parent phosphines (rac)-(dbf)MePhP (6) with organoazides. The ligands 7 and 8 were protonated by Br?nsted acids to afford the aminophosphonium borate salts [(7)-H][BAr(4)] (9: Ar = C(6)F(5); 11: Ar = Ph) and [(8)-H][BAr(4)] (10: Ar = C(6)F(5); 12: Ar = Ph). The protonated ligands 9 and 10 were active toward alkane elimination reactions with diethylzinc and ethyl-[methyl-(S)-lactate]zinc to give the heteroleptic complexes [{(dbf)MePhP═NAr}ZnR][B(C(6)F(5))(4)] (Ar = Dipp, 13: R = Et; 15: R = methyl-(S)-lactate; Ar = Mes, 14: R = Et; 16: R = methyl-(S)-lactate). By contrast, reaction of the tetraphenylborate derivative 11 with diethylzinc yielded a phenyl transfer product, [(dbf)MePhP═NDipp]ZnPh(2) (17). Complex 15 was found to catalyze the ring-opening polymerization of rac-lactide.  相似文献   

6.
The reaction of thallium ethoxide with [H(OEt2)2][H2N{B(C6F5)3}2] in diethyl ether afforded [Tl(OEt2)3][H2N{B(C6F5)3}2] (2a), [Tl(OEt2)4][H2N{B(C6F5)3}2] (2b), or [Tl(OEt2)2][H2N{B(C6F5)3}2].CH2Cl2 (2c), depending on the reaction conditions. The dication in the hydrolysis product [Tl4(mu3-OH)2][H2N{B(C6F5)3}2]2.4CH2Cl2 consists of two bridging and two terminal Tl+ ions bound to triply bridging hydroxides. Heating Et2O complexes in toluene afforded [Tl(eta6-toluene)n][H2N{B(C6F5)3}2] (4, n = 2, 3), while C6Me6 addition gave the first thallium-C6Me6 adduct, [Tl(eta6-C6Me6)2][H2N{B(C6F5)3}2].1.5CH2Cl2 (5a), a bent sandwich complex with very short Tl...centroid distances. These arene complexes show no close contacts between cations and anions. Displacement of toluene ligands by ferrocene gave [Tl2(FeCp2)3][H2N{B(C6F5)3}2]2.5CH2Cl2 (6) which contains the multidecker cations [Tl(FeCp2)]+ and [Tl(FeCp2)2]+ in a 1:1 ratio. By contrast, decamethylferrocene leads to electron transfer; the isolable thallium-ferrocene complexes may therefore be viewed as precursor complexes for this redox step. With 18-crown-6 the complexes [Tl(18-crown-6)2][H2N{B(C6F5)3}2] (11a) and [Tl(18-crown-6)][H2N{B(C6F5)3}2].2CH2Cl2 (11b) were isolated. The structure of the latter shows an eight-coordinate thallium ion, where the coordination to the six oxygen donors in equatorial positions is completed by axial contacts to two F atoms of the counter anions. The bonding between thallium(I) and arenes was explored by density-functional theory (DFT) calculations. The optimized geometry of [Tl(tol)3]+ converged to a structure very similar to that obtained experimentally. Calculations on [Tl(C6Me6)2]+ (5b) to establish whether a linear or bent geometry is the most stable revealed a very flat potential-energy surface for distortions of the Ctr(3)-Tl-Ctr(4) angle. Overall, there is very little energetic preference for one particular geometry over another above about 140 degrees , in good agreement with the crystallographic geometry. The calculated Tl-arene interaction energies increase from 73.7 kJ mol-1 for toluene to 121.7 kJ mol-1 for C6Me6.  相似文献   

7.
Oxidative addition of an aryl-halide to Ni(COD)(2) in the presence of an equivalent of amino-bis-phosphinimine ligand affords complexes of the form [HN(CH(2)CH(2)N=PPh(3))(2)Ni-Ar][X] (Ar = C(6)H(4)F, C(6)H(5), X = Cl, Br) while the analogous reactions with 2 equivalents of Ni yield the amido-bridged complexes N(CH(2)CH(2)N=PPh(3))Ni(2)Br(3) and N(1,2-C(6)H(4)N=PPh(3))Ni(2)Br(3).  相似文献   

8.
The gold(I) thiolate complexes [Au(2-SC6H4NH2)(PPh3)] (1), [PPN][Au(2-SC6H4NH2)2] (2) (PPN = PPh3=N=PPh3), and [{Au(2-SC6H4NH2)}2(mu-dppm)] (3) (dppm = PPh2CH2PPh2) have been prepared by reaction of acetylacetonato gold(I) precursors with 2-aminobenzenethiol in the appropriate molar ratio. All products are intensely photoluminescent at 77 K. The molecular structure of the dinuclear derivative 3 displays a gold-gold intramolecular contact of 3.1346(4) A. Further reaction with the organometallic gold(III) complex [Au(C6F5)3(tht)] affords dinuclear or tetranuclear mixed gold(I)-gold(III) derivatives with a thiolate bridge, namely, [(AuPPh3){Au(C6F5)3}(mu2-2-SC6H4NH2)] (4) and [(C6F5)3Au(mu2-2-SC6H4NH2)(AudppmAu)(mu2-2-SC(6)H4NH2)Au(C6F5)3] (5). X-ray diffraction studies of the latter show a shortening of the intramolecular gold(I)-gold(I) contact [2.9353(7) or 2.9332(7) A for a second independent molecule], and short gold(I)-gold(III) distances of 3.2812(7) and 3.3822(7) A [or 3.2923(7) and 3.4052(7) A] are also displayed. Despite the gold-gold interactions, the mixed derivatives are nonemissive compounds. Therefore, the complexes were studied by DFT methods. The HOMOs and LUMOs for gold(I) derivatives 1 and 3 are mainly centered on the thiolate and phosphine (or the second thiolate for complex 2), respectively, with some gold contributions, whereas the LUMO for derivative 4 is more centered on the gold(III) fragment. TD-DFT results show a good agreement with the experimental UV-vis absorption and excitation spectra. The excitations can be assigned as a S --> Au-P charge transfer with some mixture of LLCT for derivative 1, an LLCT mixed with ILCT for derivative 2, and a S --> Au...Au-P charge transfer with LLCT and MC for derivative 3. An LMCT (thiolate --> Au(III) mixed with thiolate --> Au-P) excitation was found for derivative 4. The differing nature of the excited states [participation of the gold(III) fragment and the small contribution of sulfur] is proposed to be responsible for quenching the luminescence.  相似文献   

9.
Flores JA  Dias HV 《Inorganic chemistry》2008,47(11):4448-4450
A rare gold(I) ethylene complex and the closely related copper(I) ethylene adduct have been isolated using [N{(C3F7)C(2,6-Cl2C6H3)N}2]- as the supporting ligand. [N{(C3F7)C(2,6-Cl2C6H3)N}2]Au(C2H4) (1) is an air-stable solid. It features a U-shaped triazapentadienyl ligand backbone and a three-coordinate, trigonal-planar gold center. The copper(I) adduct [N{(C3F7)C(2,6-Cl2C6H3)N}2]Cu(C2H4) (2) also has a similar structure. The 13C NMR signal corresponding to the ethylene carbons of 1 appears at about 64 ppm upfield from the free ethylene, while the ethylene carbons of 2 show a relatively smaller (39 ppm) upfield shift. [N{(C3F7)C(2,6-Cl2C6H3)N}2]M(C2H4) (M=Cu, Au) mediate carbene-transfer reactions from ethyl diazoacetate to saturated and unsaturated hydrocarbons.  相似文献   

10.
Novel thiosemicarbazonato complexes of gold(III) have been prepared from reactions of [Au(damp-C1,N)Cl2(damp- = 2-(N,N-dimethylaminomethyl)phenyl) or [NBu4][AuCl4] with 2-pyridineformamide thiosemicarbazones (HL). The thiosemicarbazones deprotonate and coordinate as mononegative, tridentate NNS ligands to gold to give [Au(Hdamp-C1)(L)]Cl2 or [AuCl(L)]Cl complexes. The organometallic damp- ligand is protonated during the reactions and the Au-N bond is cleaved. The [AuCl(L)]+ cations represent the first gold(III) complexes with thiourea derivatives which are not stabilised by an additional organometallic ligand. Reactions of [NBu4][AuX4](X = Cl, Br) with diphenylthiocarbazone (dithizone) result in reduction of the metal and the formation of gold(I) complexes of the composition [AuX(SCN4-3,4-Ph2)] where SCN4-3,4-Ph2 is 3,4-diphenyltetrazole thione which is formed from cyclisation of dithizone.  相似文献   

11.
A straightforward to assemble catalytic system for the intermolecular hydroacylation reaction of beta-S-substituted aldehydes with activated and unactivated alkenes and alkynes is reported. These catalysts promote the hydroacylation reaction between beta-S-substituted aldehydes and challenging substrates, such as internal alkynes and 1-octene. The catalysts are based upon [Rh(cod)(DPEphos)][ClO(4)] (DPEphos=bis(2-diphenylphosphinophenyl)ether, cod=cyclooctadiene) and were designed to make use of the hemilabile capabilities of the DPEphos ligand to stabilise key acyl-hydrido intermediates against reductive decarbonylation, which results in catalyst death. Studies on the stoichiometric addition of aldehyde (either ortho-HCOCH(2)CH(2)SMe or ortho-HCOC(6)H(4)SMe) and methylacrylate to precursor acetone complexes [Rh(acetone)(2)(DPEphos)][X] [X=closo-CB(11)H(6)Cl(6) or [BAr(F) (4)] (Ar(F)=3,5-(CF(3))(2)C(6)H(3))] reveal the role of the hemilabile DPEphos ligand. The crystal structure of [Rh(acetone)(2)(DPEphos)][X] shows a cis-coordinated diphosphine ligand with the oxygen atom of the DPEphos distal from the rhodium. Addition of aldehyde forms the acyl hydride complexes [Rh(DPEphos)(COCH(2)CH(2)SMe)H][X] or [Rh(DPEphos)(COC(6)H(4)SMe)H][X], which have a trans-spanning DPEphos ligand and a coordinated ether group. Compared to analogous complexes prepared with dppe (dppe=1,2-bis(diphenylphosphino)ethane), these DPEphos complexes show significantly increased resistance towards reductive decarbonylation. The crystal structure of the reductive decarbonylation product [Rh(CO)(DPEphos)(EtSMe)][closo-CB(11)H(6)I(6)] is reported. Addition of alkene (methylacrylate) to the acyl-hydrido complexes forms the final complexes [Rh(DPEphos)(eta(1)-MeSC(2)H(4)-eta(1)-COC(2)H(4)CO(2)Me)][X] and [Rh(DPEphos)(eta(1)-MeSC(6)H(4)-eta(1)-COC(2)H(4)CO(2)Me)][X], which have been identified spectroscopically and by ESIMS/MS. Intermediate species in this transformation have been observed and tentatively characterised as the alkyl-acyl complexes [Rh(CH(2)CH(2)CO(2)Me)(COC(2)H(4)SMe)(DPEphos)][X] and [Rh(CH(2)CH(2)CO(2)Me)(COC(6)H(4)SMe)(DPEphos)][X]. In these complexes, the DPEphos ligand is now cis chelating. A model for the (unobserved) transient alkene complex that would result from addition of alkene to the acyl-hydrido complexes comes from formation of the MeCN adducts [Rh(DPEphos)(MeSC(2)H(4)CO)H(MeCN)][X] and [Rh(DPEphos)(MeSC(6)H(4)CO)H(MeCN)][X]. Changing the ligand from DPEphos to one with a CH(2) linkage, [Ph(2)P(C(6)H(4))](2)CH(2), gave only decomposition on addition of aldehyde to the acetone precursor, which demonstrated the importance of the hemiabile ether group in DPEphos. With [Ph(2)P(C(6)H(4))](2)S, the sulfur atom has the opposite effect and binds too strongly to the metal centre to allow access to productive acetone intermediates.  相似文献   

12.
Reactions of [Au(PPh3)Cl], (Bu4N)[AuCl4] and the organometallic gold complex [Au(damp-C1,N)Cl2] (damp- = 2-(N,N-dimethylaminomethyl)phenyl) with the potentially tri- and tetradentate proligands PhP(C6H3-SH-2-R-3)2 (H2L1a, R = SiMe3; H2L1b, R = H) and P(C6H4-SH-2)3 (H3L2) result in the formation of mono- or dinuclear gold complexes depending on the precursor used. Monomeric complexes of the type [AuL1Cl] are formed upon the reaction with [Au(damp-C1,N)Cl2], but small amounts of dinuclear [AuL1]2 complexes with gold in two different oxidation states, +1 and +3, have been isolated as side-products. The dinuclear compounds are obtained in better yields from [AuCl4]-. A dinuclear complex having two Au(III) centers can be isolated from the reaction of [Au(PPh3)Cl] with H3L2, whereas from the reaction with H2L1b the mononuclear [Au(Ph3P)HL1b] is obtained, which contains a three-coordinate gold atom. Comparatively short gold-gold distances have been found in the dinuclear complexes (2.978(2) and 3.434(1) A). They are indicative of weak gold-gold interactions, which is unusual for gold(III).  相似文献   

13.
Takuma M  Ohki Y  Tatsumi K 《Inorganic chemistry》2005,44(17):6034-6043
The [MoCu] carbon monoxide dehydrogenase (CODH) is a Cu-containing molybdo-flavoprotein, the active site of which contains a pterin-dithiolene cofactor bound to a sulfido-bridged dinuclear Mo-Cu complex. In this paper, the synthesis and characterization of dinuclear Mo-Cu complexes relevant to the active site of [MoCu]-CODH are described. Reaction of [MoO2S2]2- with CuCN affords the dinuclear complex [O2MoS2Cu(CN)]2- (1), in which the CN- ligand can be replaced with various aryl thiolates to give rise to a series of dinuclear complexes [O2MoS2Cu(SAr)]2- (Ar = Ph (2), o-Tol (3), and p-Tol (4)). An alternative synthesis of complex 2 is the reaction of [MoO2S2]2- with [Cu(SPh)3]2-. Similarly, [O2MoS2Cu(PPh3)]- (5), [O2MoS2Cu(dppe)]- (dppe = 1,2-bis(diphenylphosphino)ethane) (6), and [O2MoS2Cu(triphos)]- (triphos = 1,1,1-tris[(diphenylphosphino)methyl]ethane) (7) were prepared from the reactions of [MoO2S2]2- with the Cu(I) phosphine complexes. Treatment of 1, 2, 4, or 5 with dithiols (1,2-(SH)2C6H4, 1,2-(SH)2C6H2-3,6-Cl2, and 1,2-(SH)2C2H4), in acetonitrile, leads to the replacement of a molybdenum-bound oxo ligand to yield [(dithiolate)Mo(O)S2CuL]2- (L = CN, SAr; dithiolate = 1,2-S2C6H4, 1,2-S2C6H2-3,6-Cl2, or 1,2-S2C2H4) (8-13) or [(1,2-S2C6H4)Mo(O)S2Cu(PPh3)]- (14) complexes.  相似文献   

14.
Deprotonation of the phosphine complexes Au(PHR(2))Cl with aqueous ammonia gave the gold(I) phosphido complexes [Au(PR(2))](n)() (PR(2) = PMes(2) (1), PCy(2) (2), P(t-Bu)(2) (3), PIs(2) (4), PPhMes (5), PHMes (6); Mes = 2,4,6-Me(3)C(6)H(2), Is = 2,4,6-(i-Pr)(3)C(6)H(2), Mes = 2,4,6-(t-Bu)(3)C(6)H(2), Cy = cyclo-C(6)H(11)). (31)P NMR spectroscopy showed that these complexes exist in solution as mixtures, presumably oligomeric rings of different sizes. X-ray crystallographic structure determinations on single oligomers of 1-4 revealed rings of varying size (n = 4, 6, 6, and 3, respectively) and conformation. Reactions of 1-3 and 5 with PPN[AuCl(2)] gave PPN[(AuCl)(2)(micro-PR(2))] (9-12, PPN = (PPh(3))(2)N(+)). Treatment of 3 with the reagents HI, I(2), ArSH, LiP(t-Bu)(2), and [PH(2)(t-Bu)(2)]BF(4) gave respectively Au(PH(t-Bu)(2))(I) (14), Au(PI(t-Bu)(2))(I) (15), Au(PH(t-Bu)(2))(SAr) (16, Ar = p-t-BuC(6)H(4)), Li[Au(P(t-Bu)(2))(2)] (17), and [Au(PH(t-Bu)(2))(2)]BF(4) (19).  相似文献   

15.
In this paper we describe the synthesis and reactivity of the diphenylphosphine derivatives [Au(C6F5)(PPh2H)] and trans-[Au(C6F5)2(PPh2H)2]ClO4. Reactions of the latter or the neutral [Au(C6F5)3(PPh2H)] with the appropriate Group 11 metal reagents (M = Au, Ag, Cu) in the presence of acetylacetonate afford a series of novel Au(III)-M phosphido-bridged complexes, which have been scarcely represented to date. The crystal structure of the tetranuclear [(Au(C6F5)2(mu-PPh2)2Ag)2] and the dinuclear [Au(C6F5)3(mu-PPh2)M(PPh3)] (M = Au,Ag) complexes were established by X-ray diffraction methods. The synthesis and deprotonating activity of the anionic gold(III) complex PPN[Au(C6F5)3(acac)] (PNN = [N(PPh3)2]+) was studied.  相似文献   

16.
Insertion of MeO(2)C-C[triple bond]C-CO(2)Me (DMAD) into the Pd-C bond of the heterodimetallic complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d(dmba-C)] (2) (dppm = Ph(2)PCH(2)PPh(2), dmba-C = metallated dimethylbenzylamine) and [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end]d(8-mq-C,N)] (3) (8-mq-C,N = cyclometallated 8-methylquinoline) yielded the sigma-alkenyl complexes [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(CO(2)Me)=C(CO(2)Me)(o-C(6)H(4)CH(2)NMe(2))}] (7) and [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(CO(2)Me)[double bond, length as m-dash]C(CO(2)Me)(CH(2)C(9)H(6)N)}] (8), respectively. The latter afforded the adduct [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end]d{C(CO(2)Me)=C(CO(2)Me)(CH(2)C(9)H(6)N)}(CNBu(t))] (9) upon reaction with 1 equiv. of Bu(t)NC. The heterodinuclear sigma-butadienyl complexes [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(Ph=C(Ph)C(CO(2)Me)=(CO(2)Me)(o-C(6)H(4)CH(2)NMe(2))}] (11) and [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(Ph)=C(CO(2)Et)C(Ph)=C(CO(2)Et)(CH(2)C(9)H(6)N)}] (13) have been obtained by reaction of the metallate K[Fe{Si(OMe)(3)}(CO)(3)(dppm-P)] (dppm = Ph(2)PCH(2)PPh(2)) with [P[upper bond 1 start]dCl{C(Ph)=C(Ph)C(CO(2)Me)=C(CO(2)Me)(o-C(6)H(4)CH(2)N[upper bond 1 end]Me(2))}] or [P[upper bond 1 start]dCl{C(Ph)=C(CO(2)Et)C(Ph)=(CO(2)Et)}(CH(2)C(9)H(6)N[upper bond 1 end])], respectively. Monoinsertion of various organic isocyanides RNC into the Pd-C bond of 2 and 3 afforded the corresponding heterometallic iminoacyl complexes. In the case of complexes [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end][upper bond 1 start]d{C=(NR)(CH(2)C(9)H(6)N[upper bond 1 end])}] (15a R = Ph, 15b R = xylyl), a static six-membered C,N chelate is formed at the Pd centre, in contrast to the situation in [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(=NR)(o-C(6)H(4)CH(2)NMe(2))}] (14a R = o-anisyl, 14b R = 2,6-xylyl) where formation of a mu-eta(2)-Si-O bridge is preferred over NMe(2) coordination. The outcome of the reaction of the dimetallic alkyl complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]dMe] with RNC depends both on the stoichiometry and the electronic donor properties of the isocyanide employed for the migratory insertion process. In the case of o-anisylisocyanide, the iminoacyl complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(=N-o-anisyl)Me}] (16) results from the reaction in a 1 : 1 ratio. Addition of three equiv. of o-anisylisocyanide affords the tris(insertion) product [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{[C(=N-o-anisyl)](3)Me}] (18). After addition of a fourth equivalent of o-anisylNC, exclusive formation of the isocyanide adduct [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end]d{[C(=N-o-anisyl)](3)Me}(CN-o-anisyl)] (19) was spectroscopically evidenced. In the complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{[C(=N-o-C(6)H(4)COCH(2))](2)Me}] (20), the sigma-bound diazabutadienyl unit is part of a 12-membered organic macrocyle which results from bis(insertion) of 1,2-bis(2-isocyanophenoxy)ethane into the Pd-Me bond of the precursor complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]dMe]. In contrast, addition of two equivalents of tert-butylisocyanide to a solution of the latter afforded [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]Fe(mu-dppm)P[upper bond 1 end]d{C(=NBu(t))Me}(CNBu(t))] (21) in which both a terminal and an inserted isocyanide ligand are coordinated to the Pd centre. In all cases, there was no evidence for competing CO substitution at the Fe(CO)(3) fragment by RNC. The molecular structures of the insertion products 8 x CH(2)Cl(2) and 16 x CH(2)Cl(2) have been determined by X-ray diffraction.  相似文献   

17.
The vapochromic behaviors of {Ag2L2[Au(C6F5)2]2}n (L = Et2O (1), Me2CO (2), THF (3), CH3CN (4)) were studied. {Ag2L2[Au(C6F5)2]2}n (L = Et2O (1)) was synthesized by the reaction of [Bu4N][Au(C6F5)2] with AgOClO3 in 1:1 molar ratio in CH2Cl2/Et2O (1:2). 1 was used as starting material with THF to form {Ag2L2[Au(C6F5)2]2}n (L = THF (3)). 3 crystallizes in the monoclinic space group C2/c and consists of tetranuclear units linked together via aurophilic contacts resulting in the formation of a 1D polymer that runs parallel to the crystallographic z axis. The gold(I) atoms are linearly coordinated to two pentafluorophenyl groups and display additional Au...Ag close contacts within the tetranuclear units with distances of 2.7582(3) and 2.7709(3) A. Each silver(I) center is bonded to the two oxygen atoms of the THF molecules with a Ag-O bond distance of 2.307(3) A. TGA analysis showed that 1 loses two molecules of the coordinated solvent per molecular unit (1st one: 75-100 degrees, second one: 150-175 degrees C), whereas 2, 3, and 4 lose both volatile organic compounds (VOCs) and fluorinated ligands in a less well defined manner. Each complex loses both the fluorinated ligands and the VOCs by a temperature of about 325 degrees C to give a 1:1 gold/silver product. X-ray powder diffraction studies confirm that the reaction of vapors of VOCs with 1 in the solid state produce complete substitution of the ether molecules by the new VOC. The VOCs are replaced in the order CH3CN > Me2CO > THF > Et2O, with the ether being the easiest to replace. {Ag2(Et2O)2[Au(C6F5)2]2}n and {Ag2(THF)2[Au(C6F5)2]2} n both luminesce at room temperature and at 77 K in the solid state. Emission maxima are independent of the excitation wavelength used below about 500 nm. Emission maxima are obtained at 585 nm (ether) and 544 nm (THF) at room temperature and at 605 nm (ether) and 567 nm (THF) at 77 K.  相似文献   

18.
A novel type of heterocycle, viz., 2,3a-disubstituted 5,6-dihydro-3aH-[1,3]oxazolo[3,2-b][1,2,4]oxadiazoles, was generated by an intermolecular PtII-mediated 1,3-dipolar cycloaddition (1,3-DCA) between the oxazoline N-oxide C(Me)2CH2OC(R)=N+(O-) (R = Me, Et) and coordinated nitriles in the complexes trans/cis-[PtCl2(R'CN)2] [R' = Me, Et, CH2Ph, Ph, N(C5H10)]. The reaction is unknown for free RCN and oxazoline N-oxides, but under PtII-mediated conditions, it proceeds smoothly (CH2Cl2, 20-25 degrees C, 18-20 h) and gives pure complexes [PtCl2{N=C(R')ONC(R)OCH2CMe2}2] [R/R' = Me/Me, 1; Me/Et, 2; Me/CH2Ph, 3; Me/Ph, 4; Me/N(C5H10), 5; Et/Me, 6; Et/Et, 7; Et/CH2Ph, 8; Et/Ph, 9; Et/N(C5H10), 10] in 42-84% yields after column chromatography. Compounds 1-10 were characterized by elemental analyses (C, H, N), FAB+-MS, IR, and 1H and 13C{1H} NMR spectroscopies, and X-ray diffraction (for 1, 2, 5, and 9). With the exception of benzonitrile complexes, 1,3-DCA of oxazoline N-oxides to the PtII-ligated nitriles occurred diastereoselectively and afforded mixtures of enantiomers. Depending on the substituents on nitriles, asymmetric atoms in both of the formed heterocyclic ligands have the same (SS/RR) or different (SR/RS) configurations. The heterocyclic ligands were liberated from 1-4 and 6-9 by treatment with excess ethane-1,2-diamine (en) in CH2Cl2 for 1 day at 20-25 degrees C (for R' = Me, Et, CH2Ph) and at 50 degrees C (for R' = Ph) to achieve the free organic species and the well-known [Pt(en)2](Cl)2; the products were separated, and 2,3a-disubstituted 5,6-dihydro-3aH-[1,3]oxazolo[3,2-b][1,2,4]oxadiazoles (11-18) were characterized by ESI+-MS and 1H and 13C{1H} NMR spectroscopies.  相似文献   

19.
Piperidinium 9H-fluorene-9-carbodithioate and its 2,7-di-tert-butyl-substituted analogue [(pipH)(S(2)CCH(C(12)H(6)R(2)-2,7)), R = H (1a), t-Bu (1b)] and 2,7-bis(octyloxy)-9H-fluorene-9-carbodithioic acid [HS(2)CCH(C(12)H(6)(OC(8)H(17))(2)-2,7), 2] and its tautomer [2,7-bis(octyloxy)fluoren-9-ylidene]methanedithiol [(HS)(2)C=C(C(12)H(6)(OC(8)H(17))(2)-2,7), 3] were employed for the preparation of gold complexes with the (fluoren-9-ylidene)methanedithiolato ligand and its substituted analogues. The gold(I) compounds Q(2)[Au(2)(mu-kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)], where Q(+) = PPN(+) or Pr(4)N(+) for R = H (Q(2)4a) or Q(+) = Pr(4)N(+) for R = OC(8)H(17) [(Pr(4)N)(2)4c], were synthesized by reacting Q[AuCl(2)] with 1a or 2 (1:1) and excess piperidine or diethylamine. Complexes of the type [(Au(PR'3))(2)(mu-kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)] with R = H and R' = Me (5a), Et (5b), Ph (5c), and Cy (5d) or R = t-Bu and R' = Me (5e), Et (5f), Ph (5g), and Cy (5h) were obtained by reacting [AuCl(PR'(3))] with 1a,b (1:2) and piperidine. The reactions of 1a,b or 2 with Q[AuCl(4)] (2:1) and piperidine or diethylamine gave Q[Au(kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)] with Q(+) = PPN(+) for R = H [(PPN)6a], Q(+) = PPN(+) or Bu(4)N(+) for R = t-Bu (Q6b), and Q(+) = Bu(4)N(+) for R = OC(8)H(17) [(Bu(4)N)6c]. Complexes Q6a-c reacted with excess triflic acid to give [Au(kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(kappa(2)-S,S-S(2)CCH(C(12)H(6)R(2)-2,7))] [R = H (7a), t-Bu (7b), OC(8)H(17) (7c)]. By reaction of (Bu(4)N)6b with PhICl(2) (1:1) the complex Bu(4)N[AuCl(2)(kappa(2)-S,S-S(2)C=C(C(12)H(6)(t-Bu)(2)-2,7))] [(Bu(4)N)8b] was obtained. The dithioato complexes [Au(SC(S)CH(C(12)H(8)))(PCy(3))] (9) and [Au(n)(S(2)CCH(C(12)H(8)))(n)] (10) were obtained from the reactions of 1a with [AuCl(PCy(3))] or [AuCl(SMe(2))], respectively (1:1), in the absence of a base. Charge-transfer adducts of general composition Q[Au(kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)].1.5TCNQ.xCH(2)Cl(2) [Q(+) = PPN(+), R = H, x = 0 (11a); Q(+) = PPN(+), R = t-Bu, x = 2 (11b); Q(+) = Bu(4)N(+), R = OC(8)H(17), x = 0 (11c)] were obtained from Q6a-c and TCNQ (1:2). The crystal structures of 5c.THF, 5e.(2)/(3)CH(2)Cl(2), 5g.CH(2)Cl(2), (PPN)6a.2Me(2)CO, and 11b were solved by X-ray diffraction studies. All the gold(I) complexes here described are photoluminescent at 77 K, and their emissions can be generally ascribed to LMMCT (Q(2)4a,c, 5a-h, 10) or LMCT (9) excited states.  相似文献   

20.
Ionic gold(I) complexes with general formula of [Au(Py)2][AuCl2] and [Au(Py)2][PF6] (Py = 4-substituted pyridines) have been synthesized. Structures of five Au(I) complexes and a Ag(I) complex were determined by single crystal X-ray diffraction. Evidence for cationic aggregation of [Au(py)2][PF6] complexes in solution was obtained by conductivity measurements and by the isosbestic point observed from variable temperature UV-visible absorption spectra. All compounds were luminous in the solid state. Calculations employing density functional theory were performed to shed light on the nature of the electronic transitions. While the [Au(4-dmapy)2][AuCl2] (4-dmapy = 4-dimethylaminopyridine) and [Au(4-pic)2][AuCl2] (4-pic = 4-picoline) emissions were found to be mainly ligand in nature, their [PF6](-) counterparts involved a Au...Au-interaction imbedded in the highest occupied molecular orbital. [Au(4-dmapy)2][AuCl2] was found to be an efficient catalyst for Suzuki cross-coupling of aryl bromide and phenylboronic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号