首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Au nanoparticles (Au NPs) modified interface has been fabricated by multi-potential step electrodeposition in this study. Based on the nano-Au interface, we have proposed an electrochemical approach to detect the cancer cell numbers sensitively with a detection limit of about 500 cells. More interestingly, the drug sensitive leukemia K562 cells and drug resistant leukemia K562/adriamycin could be electrochemically distinguished on the interface by the oxidation potential, which did not show any evident differences on the bare electrode. These results indicate the promising application of this nano-interface for constructing the unlabeled potential-discriminative cell biosensors.  相似文献   

2.
3.
Compared to enzymes, Au nanocatalysts show better long-term stability and are more easily prepared. Au nanoparticles (AuNPs) are used as catalytic labels to achieve ultrasensitive DNA detection via fast catalytic reactions. In addition, magnetic beads (MBs) are employed to permit low nonspecific binding of DNA-conjugated AuNPs and to minimize the electrocatalytic current of AuNPs as well as to take advantage of easy magnetic separation. In a sandwich-type electrochemical sensor, capture-probe-conjugated MBs and an indium-tin oxide electrode modified with a partially ferrocene-modified dendrimer act as the target-binding surface and the signal-generating surface, respectively. A thiolated detection-probe-conjugated AuNP exhibits a high level of unblocked active sites and permits the easy access of p-nitrophenol and NaBH 4 to these sites. Electroactive p-aminophenol is generated at these sites and is then electrooxidized to p-quinoneimine at the electrode. The p-aminophenol redox cycling by NaBH 4 offers large signal amplification. The nonspecific binding of detection-probe-conjugated AuNPs is lowered by washing DNA-linked MB-AuNP assemblies with a formamide-containing solution, and the electrocatalytic oxidation of NaBH 4 by AuNPs is minimized because long-range electron transfer between the electrode and the AuNPs bound to MBs is not feasible. The high signal amplification and low background current enable the detection of 1 fM target DNA.  相似文献   

4.
A simple but highly sensitive colorimetric method was developed to detect cancer cells based on aptamer–cell interaction. Cancer cells were able to capture nucleolin aptamers (AS 1411) through affinity interaction between AS 1411 and nucleolin receptors that are over expressed in cancer cells, The specific binding of AS 1411 to the target cells triggered the removal of aptamers from the solution. Therefore no aptamer remained in the solution to hybridize with complementary ssDNA-AuNP probes as a result the solution color is red. In the absence of target cells or the presence of normal cells, ssDNA-AuNP probes and aptamers were coexisted in solution and the aptamers assembled DNA-AuNPs, produced a purple solution. UV–vis spectrometry demonstrated that this hybridization-based method exhibited selective colorimetric responses to the presence or absence of target cells, which is detectable with naked eye. The linear response for MCF-7 cells in a concentration range from 10 to 105 cells was obtained with a detection limit of 10 cells. The proposed method could be extended to detect other cells and showed potential applications in cancer cell detection and early cancer diagnosis.  相似文献   

5.
Bio-functioned fluorescent silica nanoparticles have been synthesized for cell labeling and cell differentiation and have shown great promise as novel fluorescent probes. The galactose-conjugated fluorescent nanoparticles (GCFNPs) have been obtained by the conjugation of amino-modified fluorescent silica nanoparticles with lactobionic acid (LA) through EDAC linkage. The GCFNPs retain excellent biological activity and can be used in bioanalysis as an immunofluorescence assay. The specific identification of target cells from the background cells have been directly demonstrated in a simple model system by a laser confocal scanning microscope, because the specific and non-specific labeling can simultaneously visualized in a given microscopic field of view. The flow cytometric analysis has proved that GCFNPs can effectively recognize target cells in the mixed cell system. The demonstration of precise identification of few liver cancer cells in the blood confirmed the excellent capability of GCFNPs in identifying specific cells in a large host cell background. The nanoparticle's excellent photostability, good biocompatibility and significant signal amplification make them well-suited for the identification of individual cells sensitively for a variety of biomedical studies such as cancer metastasis and stem cell progeny in vivo.  相似文献   

6.
7.
In situ IR detection of carbon monoxide in the presence of hydrocarbons (methanol and pentane) using Pd-containing zeolite thin films is reported. The thin films are prepared by spin coating deposition of nanosized LTL and BEA type zeolites suspensions; the palladium clusters are introduced in the nanosized zeolites by ion exchange followed by γ radiolysis of the coating suspensions. The Pd-containing zeolite films with a thickness of 200 nm are exposed to a single gas (either CO or hydrocarbons) or gas mixtures in the presence of water (100 ppm), and the IR spectra are collected continuously at 25, 75, and 100 °C. The fast recognition of very low concentrations of CO (2-100 ppm) in the presence of highly concentrated vapors of methanol or pentane (400-4000 ppm) with the Pd-containing zeolite films is demonstrated. The detection of CO and hydrocarbons is instant, which is a function of the low thickness of the films, small size of the individual zeolite crystals, and regular size and high stability of the Pd clusters in the zeolite films. The heat of adsorption for all experiments is similar (15 kJ.mol(-1)), which is explained with weak interactions between the carbon monoxide and palladium clusters in the zeolite films at temperatures below 100 °C. The nanosized zeolites with homogeneously distributed Pd clusters deposited in thin films demonstrate high molecular recognition capacity toward low concentrations of carbon monoxide under real environmental conditions, i.e., in the presence of water and hydrocarbons.  相似文献   

8.
We report here an ultrasensitive DNA detection approach which combines Au NPs enhanced electrochemiluminescence (ECL) of the CdS nanocrystal (NC) film with isothermal circular amplification reaction of polymerase and nicking endonuclease (NEase). By the double-signal amplification, this approach could sensitively respond down to 5 aM DNA.  相似文献   

9.
An indirect colorimetric method is presented for detection of trace amounts of hydroquinone (1), catechol (2) and pyrogallol (3). The reduction of AuCl4(-) to Gold nanoparticles (Au-NPs) by these phenolic compounds in the presence of cetyltrimethylammonium chloride (CTAC) produced very intense surface plasmon resonance peak of Au-NPs. The plasmon absorbance of Au-NPs allows the quantitative colorimetric detection of the phenolic compounds. The calibration curves derived from the changes in absorbance at lambda = 568 nm were linear with concentration of hydroquinone, catechol and pyrogallol in the range of 7.0 x 10(-7) to 1.0 x 10(-4)M, 6.0 x 10(-6) to 2.0 x 10(-4)M and 6.0 x 10(-7) to 1.0 x 10(-4)M, respectively. The detection limits were 5.3 x 10(-7), 2.5 x 10(-6) and 3.2 x 10(-7)M for the hydroquinone, catechol and pyrogallol, respectively. The method was applied satisfactorily to the determination of phenolic compounds in water samples and pharmaceutical formulations.  相似文献   

10.
11.
From a library of glyco-lipid mimics with muconic amide as the spacer, we found that 1, a glyco-lipid that has N-acetyl glucosamine and methyl cyclohexyl groups as its hydrophilic head and hydrophobic tails, respectively, formed a stable hydrogel (0.05 wt %) through hierarchical self-assembly of the lipid molecules into supramolecular nanofibers. The formation of the supramolecular hydrogel was verified by rheological measurements, and the supramolecular nanofiber was characterized as the structural element by transmission electron microscopy and atomic force microscopy observations. Absorption and circular dichroism spectroscopic measurements revealed that the muconic amide moieties of 1 are arranged in a helical, stacked fashion in the self-assembled nanofibers. Moreover, we unexpectedly found that the homogeneous distribution of the supramolecular nanofibers of 1 was greatly facilitated by the addition of polystyrene nanobeads (100-500 nm in diameter), as evaluated by confocal laser scanning microscopic observations. It is interesting that the obtained supramolecular hybrid matrix can efficiently encapsulate and distribute live Jurkat cells in three dimensions under physiological conditions. This supramolecular hybrid matrix is intriguing as a unique biomaterial.  相似文献   

12.

We are describing immunochromatographic test strips with smart phone-based fluorescence readout. They are intended for use in the detection of the foodborne bacterial pathogens Salmonella spp. and Escherichia coli O157. Silica nanoparticles (SiNPs) were doped with FITC and Ru(bpy), conjugated to the respective antibodies, and then used in a conventional lateral flow immunoassay (LFIA). Fluorescence was recorded by inserting the nitrocellulose strip into a smart phone-based fluorimeter consisting of a light weight (40 g) optical module containing an LED light source, a fluorescence filter set and a lens attached to the integrated camera of the cell phone in order to acquire high-resolution fluorescence images. The images were analysed by exploiting the quick image processing application of the cell phone and enable the detection of pathogens within few minutes. This LFIA is capable of detecting pathogens in concentrations as low as 105 cfu mL−1 directly from test samples without pre-enrichment. The detection is one order of magnitude better compared to gold nanoparticle-based LFIAs under similar condition. The successful combination of fluorescent nanoparticle-based pathogen detection by LFIAs with a smart phone-based detection platform has resulted in a portable device with improved diagnosis features and having potential application in diagnostics and environmental monitoring.

The successful combination of fluorescent nanoparticle-based pathogen detection by lateral flow immunoassay with a smart phone-based detection platform has resulted in a portable device that enables rapid and reliable bacterial detection holding large potential in diagnostics and environmental monitoring

  相似文献   

13.
A protein labeling approach is employed for the localization of a zinc-responsive fluorescent probe in the mitochondria and in the Golgi apparatus of living cells. ZP1, a zinc sensor of the Zinpyr family, was functionalized with a benzylguanine moiety and thus converted into a substrate (ZP1BG) for the human DNA repair enzyme alkylguaninetransferase (AGT or SNAP-Tag). The labeling reaction of purified glutathione S-transferase tagged AGT with ZP1BG and the zinc response of the resulting protein-bound sensor were confirmed in vitro. The new detection system, which combines a protein labeling methodology with a zinc fluorescent sensor, was tested in live HeLa cells expressing AGT in specific locations. The enzyme was genetically fused to site-directing proteins that anchor the probe onto targeted organelles. Localization of the zinc sensors in the Golgi apparatus and in the mitochondria was demonstrated by fluorescence microscopy. The protein-bound fluorescence detection system is zinc-responsive in living cells.  相似文献   

14.
We are describing immunochromatographic test strips with smart phone-based fluorescence readout. They are intended for use in the detection of the foodborne bacterial pathogens Salmonella spp. and Escherichia coli O157. Silica nanoparticles (SiNPs) were doped with FITC and Ru(bpy), conjugated to the respective antibodies, and then used in a conventional lateral flow immunoassay (LFIA). Fluorescence was recorded by inserting the nitrocellulose strip into a smart phone-based fluorimeter consisting of a light weight (40 g) optical module containing an LED light source, a fluorescence filter set and a lens attached to the integrated camera of the cell phone in order to acquire high-resolution fluorescence images. The images were analysed by exploiting the quick image processing application of the cell phone and enable the detection of pathogens within few minutes. This LFIA is capable of detecting pathogens in concentrations as low as 105 cfu mL?1 directly from test samples without pre-enrichment. The detection is one order of magnitude better compared to gold nanoparticle-based LFIAs under similar condition. The successful combination of fluorescent nanoparticle-based pathogen detection by LFIAs with a smart phone-based detection platform has resulted in a portable device with improved diagnosis features and having potential application in diagnostics and environmental monitoring. Figure
The successful combination of fluorescent nanoparticle-based pathogen detection by lateral flow immunoassay with a smart phone-based detection platform has resulted in a portable device that enables rapid and reliable bacterial detection holding large potential in diagnostics and environmental monitoring  相似文献   

15.
Formation mechanisms of metal particles (gold (Au) particles) in an aqueous ethanol solution of HAuCl4 with poly(N-vinyl-2-pyrrolidone) (PVP) by the photoreduction method were investigated by UV-vis, transmission electron microscopy (TEM), and in situ and ex situ X-ray absorption fine structure (XAFS) analysis. The average diameters of the dilute and concentrated Au particles in PVP solution are estimated from TEM to be 106 A and 925 A, respectively. XAFS analysis was carried out to elucidate the reduction process of AuCl4- ionic species to metallic Au particles for the Au-L3 edge of the colloidal dispersions of the concentrated Au solutions. In the photoreduction process, the reduction of AuCl2- species to Au0 atoms is a slower process than that of AuCl4- to AuCl2-, and the reduction of AuCl2- to Au0 atoms and the association of Au0 atoms to form seed Au particles (particle diameter between 5.5 and 30 A) concurrently proceeds in the short-duration photoirradiation. In addition, in the long-duration photoirradiation, the slow progression of Au particle growth occurs with the association of Au0-Au0 metallic bonds, resulting in the formation of larger Au particles (particle diameter larger than 500 A).  相似文献   

16.
Integration of fluorescent-conjugated polymers as detection moiety with metallic striped nanorods for multiplexed detection of clinically important cancer marker proteins in an immunoassay format was demonstrated in this report. Specifically, cationic conjugated polymers were introduced to protein complexes through electrostatic binding to negatively charged double-stranded DNA, which was tagged on detection antibodies prior to antigen recognition. The intense fluorescence emission of conjugated polymers resulted in highly sensitive detection of cancer marker proteins wherein an undiluted bovine serum sample as low as ∼25 target molecules captured on each particle was detectable. Meanwhile, the use of polymer molecules as the detection probe did not obscure the optical pattern of underlying nanorods, i.e., the encoding capability of barcoded nanorods was preserved, which allowed simultaneous detection of three cancer marker proteins with good specificity.  相似文献   

17.
The unique properties of magnetic nanocrystals provide them with high potential as key probes and vectors in the next generation of biomedical applications. Although superparamagnetic iron oxide nanocrystals have been extensively studied as excellent magnetic resonance imaging (MRI) probes for various cell trafficking, gene expression, and cancer diagnosis, further development of in vivo MRI applications has been very limited. Here, we describe in vivo diagnosis of cancer, utilizing a well-defined magnetic nanocrystal probe system with multiple capabilities, such as small size, strong magnetism, high biocompatibility, and the possession of active functionality for desired receptors. Our magnetic nanocrystals are conjugated to a cancer-targeting antibody, Herceptin, and subsequent utilization of these conjugates as MRI probes has been successfully demonstrated for the monitoring of in vivo selective targeting events of human cancer cells implanted in live mice. Further conjugation of these nanocrystal probes with fluorescent dye-labeled antibodies enables both in vitro and ex vivo optical detection of cancer as well as in vivo MRI, which are potentially applicable for an advanced multimodal detection system. Our study finds that high performance in vivo MR diagnosis of cancer is achievable by utilizing improved and multifunctional material properties of iron oxide nanocrystal probes.  相似文献   

18.
In this work, an electrochemical dihydronicotinamide adenine dinucleotide (NADH) sensor based on the catalytic growth of Au nanoparticles (Au NPs) on glassy carbon electrode was developed. Catalyzed by Au NPs immobilized on pretreated glassy carbon electrode, the reduction of AuCl4 ? in the presence of hydroquinone and cetyltrimethyl ammonium chloride led to the formation of enlarged Au NPs on the electrode surface. Spectrophotometry and high-resolution scanning electronic microscope (SEM) analysis of the sensor morphologies before and after biocatalytic reaction revealed a diameter growth of the nanoparticles. The catalytic growth of Au NPs on electrode surface remarkably facilitated the electron transfer and improved the performance of the sensor. Under optimal conditions, NADH could be detected in the range from 1.25?×?10?6 to 3.08?×?10?4 M, and the detection limit was 2.5?×?10?7 M. The advantages of the proposed sensor, such as high precision and sensitivity, fast response, low cost, and good storage stability, made it suitable for on-line detection of NADH in complex biological systems and contaminant degradation processes.
Figure
Schematic presentation of the bioelectrocatalytic sensing of NADH  相似文献   

19.
Complexation affinity of laurate ligands (C(12)H(23)O(2)) grafted onto the surface of cerium(IV) oxide nanoparticles can be probed and quantified in situ, by pulsed field gradient (1)H NMR through the dependence of the diffusion coefficient on the size of a species.  相似文献   

20.
DNA sequences attached to Au nanoparticles via thiol linkers stand up from the surface, giving preferential enhancement of the adenine ring breathing SERS band. Non-specific binding via the nucleobases reorients the DNA, reducing this effect. This change in intensity on reorientation was utilised for label-free detection of hybridization of a molecular beacon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号