首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用液相电沉积的方法在1600V,60℃条件下,从乙腈中沉积出类金刚石薄膜,发现了电流密度随反应时间呈波动变化的规律,并利用原子力显微镜和透射电子显微镜对薄膜不同生长阶段的形貌进行了考察.  相似文献   

2.
Thin films of cobalt (10, 40, and 100 nm) are deposited on Si substrate by electron beam physical vapor deposition technique. After deposition, 4 pieces from each of the wafers of silicon substrate were cut and annealed at a temperature of 200°C, 300°C, and 400°C for 2 hours each, separately. X‐ray diffraction, atomic force microscopy, and transmission electron microscopy (TEM) are used to study the structural and morphological characteristics of the deposited films. To obtain TEM images, Co films are deposited on Cu grids; so far, no such types of TEM images of Co films are reported. Structural studies confirm nanocrystalline nature with hexagonal close packed structure of the deposited Co film at lower thickness, while at higher thickness, film structure transforms to amorphous with lower surface roughness value. The particle sizes in all the cases are in the range of 3 to 5 nm. Micro‐Raman spectroscopy is also used to study the phase formation and chemical composition as a function of thickness and temperature. The results confirm that the grown films are of good quality and free from any impurity. Studies show the silicide formation at the interface during deposition. The appearance of new band at 1550 cm−1 as a result of annealing indicates the structural transformation from CoSi to CoSi2, which further enhances at higher annealing temperatures.  相似文献   

3.
《Solid State Sciences》2012,14(6):715-718
ZnO nanoparticles-embedded diamond-like amorphous (DLC) carbon films have been prepared by electrochemical deposition. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) results confirm that the embedded ZnO nanoparticles are in the wurtzite structure with diameters of around 4 nm. Based on Raman measurements and atomic force microscope (AFM) results, it has been found that ZnO nanoparticles embedding could enhance both graphitization and surface roughness of DLC matrix. Also, the field electron emission (FEE) properties of the ZnO nanoparticles-embedded DLC film were improved by both lowering the turn-on field and increasing the current density. The enhancement of the FEE properties of the ZnO-embedded DLC film has been analyzed in the context of microstructure and chemical composition.  相似文献   

4.
Tungsten trioxide‐incorporated hydrogenated amorphous carbon (WO3/a‐C:H) films have been fabricated on a single‐crystal silicon wafer by liquid phase electrodeposition using methanol as carbon source and tungsten carbonyl as incorporated reagent. The morphology, composition and structure of the films have been investigated by SEM, XPS, Raman scattering spectroscopy, Fourier transform infrared spectroscopy (FTIR) and Transmission electron microscope (TEM), respectively. The effects of WO3 incorporation on the electrical and wetting properties were studied in detail. The characterization results showed that tungsten trioxide nanocrystalline particles with diameters in the range of 10–20 nm were homogenously embedded in the amorphous carbon films. Also, the electrical conductivity and wetting ability of the films were strongly improved due to the contribution of the tungsten trioxide. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Magnesium oxide thin films have been deposited with use of single source chemical vapor deposition (SSCVD). The resultant films were examined by using transmission electron microscopy, X-ray texture analysis, and pole figure analysis. Due to the nature of the chemical reactions occurring at the surface during SSCVD growth, which result in a high growth rate/low flux environment, films of (111) orientation have been achieved without an amorphous underlayer, an unusual result for films of this orientation. Moreover the films have a strong degree of biaxial texturing in the x-y plane as found with X-ray texture analysis. These findings have important implications for buffer layers in perovskite thin film devices. The mechanism producing these structures has been revealed by using TEM and is discussed here.  相似文献   

6.
A new coating process is described (deposition from two immiscible supercritical phases, or DISP) in which a solution of supercritical carbon dioxide (scCO2) with a desired solute is displaced by supercritical helium (scHe). After depressurization, the solute is deposited on substrates initially submerged in the coating solvent. Micron-sized particles and thin films of sucrose octaacetate (SOA) were formed on silicon wafer substrate coupons from DISP at relatively low temperatures and pressures (< or = 6500 psi and < or = 60 degrees C). The particle size, film thickness, and morphology of SOA were characterized as a function of coating conditions-solution concentrations, withdrawal velocities, and pressures. Particles in the range of 1-14 microm in diameter were deposited at low solute concentrations (< or = 0.2 wt % at 4500 psi), whereas films in the range of 0.1-0.5 microm in thickness were deposited at higher solute concentrations (> or = 1.5 wt % at 4500 psi). Particle sizes decreased with increasing displacement velocity and increasing pressure. Estimates of characteristic times for diffusion and nucleation indicate that DISP is a diffusion-limited process. Optical microscopy and atomic force microscopy (AFM) were used to characterize film morphology, including defect formations and film roughness. Highly uniform films with low root-mean-square (RMS) roughness (approximately 10 angstroms) were obtained at a low displacement velocity of 0.0035 cm/s, while ring-like defect structures were observed in films deposited at a higher displacement velocity of 0.035 cm/s. The film thickness and morphology of the films deposited from DISP were compared with films from normal dip coating with typical organic solvents (acetone and toluene). Films deposited from scCO2 by DISP were much thicker, more uniform, and exhibited much fewer drying defects and lower RMS roughness compared with films from the organic solvents.  相似文献   

7.
Nanostructured titanium dioxide films have been reported to be used in many applications ranging from optics and solar energy devices to gas sensors. This work describes the synthesis of nanocrystalline titania films via an aqueous solution-gel method. The thin films are deposited by spin coating an aqueous citratoperoxo-Ti(IV)-precursor solution onto a silicon substrate. The influence of processing parameters like Ti4+ concentration and crystallization temperature on the phase formation, crystallite size and surface morphology of the films is studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Furthermore, the effect of successive layer deposition on the film thickness of the resulting films is studied by means of cross sectional SEM. SEM and TEM micrographs clearly show that, after optimization of the process parameters, thin, smooth, dense nanocrystalline films are synthesized in a reproducible manner. The films are composed of 15–20 nm grains. At higher crystallization temperatures (600, 650°C) also larger particles (40–70 nm) are present. XRD data reveal that a phase pure anatase film is formed at 450°C. Crystallization temperatures equal to or higher than 600 °C however give rise to the formation of both the anatase and rutile crystalline phases. The smoothness of the films is proved by their very low rms surface roughness (≤1.1 nm) measured by AFM.  相似文献   

8.
纳米材料,包括尺寸为纳米量级的超细微粒?线?薄膜?量子阱和超晶格等引起了人们广泛的重视 [1,2] ?其中 , 半导体纳米微粒和由其构成的纳米固体结构开辟了材料科学研究的新领域?硫化镉 (CdS) 作为一种重要的Ⅱ - Ⅵ族无机半导体材料 , 具有独特的光电性质 , 在光电化学电池和多相光催化反应中都有广泛应用?近年来 , 已有大量关于合成 CdS 纳米结构的文献报导 [3~12] , 所采用的方法如反胶束法?单分子膜法?自组装法以及电化学沉积法等 , 其中非水电解与模板技术相结合的制备方法引起了人们高度的重视并且被广泛的采用?自从 Baranski 等在上…  相似文献   

9.
利用脉冲电弧放电电离甲醇溶液在常压下研究了含金刚石成分的碳膜的制备。用扫描电子显微镜(SEM)、傅里叶红外光谱(FT-IR)、激光Raman光谱和X射线衍射(XRD)研究了在确定的基片温度下甲醇浓度以及放电电压等沉积条件对薄膜的形貌和金刚石的合成的影响。研究结果表明:在放电电压低于2kV时,薄膜主要由无序石墨和无定形碳组成。提高放电电压有助于金刚石的合成,在高的放电电压下,降低甲醇溶液浓度有利于提高碳膜中金刚石成分的含量。  相似文献   

10.
Taking the advantage of the stability and penetrability of polyelectrolyte films formed by layer-by-layer (LbL) deposition, noble metal particles of Pd and Pt were fabricated in a preformed polyeletrolyte multilayer film by galvanic deposition. The metal deposition occurred as metal particles and they were tested for their properties as electrocatalyst for oxygen reduction. Atomic force microscopy (AFM) was used to characterize the morphology of the particle films. The noble metal particles were investigated by cyclic voltammetry (CV) and scanning electrochemical microscopy (SECM) with respect to oxygen reduction. The results show that the electrocatalytic properties of the Pd particle film can be adjusted by the electrodeposition time. The hydrogen peroxide formed as an intermediate during electroreduction of dioxygen was conveniently measured in the SECM using the substrate-generation/tip-collection mode. The relevance of the main reduction pathways could be extracted from fitting the current transients to an analytical model.  相似文献   

11.
Fe–DLC composite film was deposited by a facile electrochemical process via the electrolysis of analytically methanol and Iron (III) 2, 4-pentanedionate under atmospheric pressure. The relative atomic ratio of Fe/C was around 10%, and nano-crystalline iron particles were homogeneously dispersed into the amorphous cross-linked carbon matrix. After doping iron into DLC films, the sp3-hybridized carbon content in DLC composite films increased, and the carbon composite film exhibits a magnetic field up to 12KOe. Moreover, the deposition of Fe–DLC composite film in liquid-phase electrochemical deposition may be followed by an atmospheric pressure plasma deposition (APPD) process.  相似文献   

12.
This work reports the growth of layered nickel hydroxide/gold films by sol-gel and dip-coating methods to obtain colored films for applications in switchable optical devices. The nickel and gold-based films were deposited on mica and glass plates from alcoholic sols. The distribution of electron density inhomogeneities (voids, nickel and gold particles) in the films was determined by means of small angle X-ray scattering (SAXS). The SAXS measurements were used to determine the nickel and gold particle sizes and to give guidelines to the appropriate chemical route to deposit homogeneous colored films. X-ray diffraction (XRD) was used to monitor the crystalline properties. Transmission electron microscopy (TEM) was used to observe the nanostructure of the gold particles and atomic force microscopy (AFM) to analyze the film surface. Spectral transmission was used to investigate the optical properties in these different layered systems, which present an absorption band in the visible region due to the gold aggregates. The composite material is deep blue. The analyses of SAXS data, TEM and AFM pictures are consistent, i.e., the formed Au particles are polydisperse in size and their clustering depends on the NiO x H y layer. The Au particles are polycrystalline, with [111]-preferred orientation, as determined by XRD. The nickel oxy-hydroxide matrix is amorphous.  相似文献   

13.
This paper presents a novel and facile method for the fabrication of nanocomposite films with ordered porous surface structures. In this approach, a water-borne poly(styrene-co-butyl acrylate-co-acrylic acid)/silica nanocomposite dispersion was synthesized in situ by surfactant-free emulsion polymerization by using 3-allyloxy-2-hydroxy-1-propanesulfonate as a polymerizable surfactant. When this dispersion was dried to form a film at a certain temperature, an ordered porous structure could be directly obtained on the surface of the nanocomposite film. SEM, TEM, and AFM were employed to observe the morphology, and XPS and particle analyzer were used to analyze the surface composition of the ordered porous nanocomposite film and the particle size, respectively.  相似文献   

14.
A combination of optical and atomic force microscopy (AFM) is used for probing changes in the morphology of polymer blend films that accompany phase ordering processes (phase separation and crystallization). The phase separation morphology of a “model” semi‐crystalline (polyethyleneoxide or PEO) and amorphous (polymethylmethacrylate or PMMA) polymer blend film is compared to previous observations on binary amorphous polymer blend films of polystyrene (PS) and polyvinylmethylether (PVME). The phase separation patterns are found to be similar except that crystallization of the film at high PEO concentrations obscures the observation of phase separation. The influence of film defects (e.g., scratches) and clay filler particles on the structure of the semi‐crystalline and amorphous polymer films is also investigated.  相似文献   

15.
IntroductionHardcarbonfilmsprcparcdb}'vari0usplasmaprocesscsareofc0nsidcrablcinterestbccauscofthcirunusualmcchanical-opticalandelcctricalpropertiesll~3l.Rccently,ithasReceive(IJl111c5,l9`)5;,.`,1iis()tI1ie)\tioII,1'ceil'edJtl1)'l4,l995*'I11isprojectiss[1pportcdh}tl1cNatiol1a1Nat[lntlScicl1ccI`()ul1dati()l1ofCl1il1aal1dtl1eI,aboraton'ofSolidI,ubricati()l1,l.al1/l10ulnstitutcofCl1cn1icalPh\'sics,111cChincscAcadcl11\'ofScicnccs.benfoundthattheinc0rporati0nofmetaIintocarbonfilmscangrcatl}'…  相似文献   

16.

The atmospheric pressure radiofrequency (RF) plasma polymerization of furan was carried out with the objective of synthesizing polyfuran thin film. The structure, compositions and morphology of the plasma deposited polyfuran film were investigated by Fourier transform infrared (FTIR), atomic force microscopy (AFM), ultraviolet‐visible absorption spectroscopy (UV‐vis) and thermogravimetric analysis (TGA). The formation of polyfuran was confirmed using FTIR and UV‐visible analysis. The properties of plasma‐deposited polyfuran were compared with those of chemically synthesized polyfuran. Although the plasma deposited thin film polyfuran shows lower thermal stability than that of chemically synthesized polyfuran. It has better solubility in CHCl3, also. Thin uniform polyfuran films are obtained in plasma assisted polyfuran deposition, while particles are obtained in chemical polyfuran polymerization.  相似文献   

17.
Hard BCN films were deposited by chemical vapour deposition (CVD) on Si(100) substrates. TCVD (thermal activated) and PECVD (GD or RF microwave plasma-activated, respectively) were used. The films were analysed with respect to chemical state, composition, morphology and microstructure, oxidation behaviour and hardness. Wavelength dispersive X-ray spectroscopy (EPMA), infrared spectroscopy (IR), transmission electron microscopy (TEM), differential thermal analysis (DTA) and hardness evaluation were employed for film characterization. A correlation between deposition parameters and film composition, structure and hardness could be proved in every CVD process. Parallels between TCVD and PECVD films emerged in the case of chemical composition and the correlation between carbon content and hardness values. Considerable differences exist with regard to the microstructure, especially the texture of the films. Moreover in TCVD films the carbon is preferentially incorporated between the BN basal planes, whereas in PECVD films it is incorporated preferentially in as well as between the BN basal planes.  相似文献   

18.
Nano-structured SiO2 thin films were prepared on the surface of carbon steel for the first time by LPD. The compositions of the films were analyzed by XPS, and the surface morphology of the thin films were observed by AFM. The thin films were constituted by compact particles of SiO2, and there was no Fe in the films. In the process of film forming, the SiO2 colloid particles were deposited or absorbed directly onto the surface of carbon steel substrates that were activated by acid solution containing inhibitor, and corrosion of the substrates was avoided. The nano-structured SiO2 thin films that were prepared had excellent protective efficiency to the carbon.  相似文献   

19.
Films of chemically shortened and functionalized single-walled carbon nanotubes (SWNTs) have been formed on a gold electrode by electrophoretic deposition. Applying ultrasonic energy resulted in dramatic changes of the film morphology; the deposited SWNT bundles reassembled and oriented normal to the electrode. Oriented SWNT bundles with high density (more than 250 bundles/microm (2)) not only presented narrow size distributions, but uniformly spread on the electrode. We discuss the mechanism of SWNT orientation by analyzing the variation in the film morphology with ultrasonication time. In addition, we suggest that the 3D displays of AFM images can lead to misjudgment of nanotube alignment. The method for aligning SWNTs normal to the electrode may be competitive with chemical vapor deposition or screen printing, the predominant methods by which vertically aligned SWNT films have been fabricated to date.  相似文献   

20.
Flat and highly (111) oriented gold and silver films were prepared by physical vapour deposition (PVD) using optimized deposition parameters. On these films, which were characterized with atomic force microscopy (AFM), scanning tunneling microscopy (STM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), titanium dioxide films were deposited by electron beam evaporation and dip coating. Dip coating from titanium tetraisopropoxide solutions resulted in films with different morphology and coverage depending on the alkoxide concentration (0.009 mol/L – 0.60 mol/L) and the post-treatment. Scanning electron microscopy (SEM) and AFM revealed that the deposited TiO2 consists of amorphous, highly porous islands when the applied alkoxide concentration is high (0.05 mol/L – 0.6 mol/L). At higher temperatures these amorphous TiO2 islands sintered significantly and crystallized to anatase. In contrast, transparent TiO2 films were obtained from low concentrated alkoxide solutions (< 0.01 mol/L) which covered the whole substrate, similar to electron beam evaporated thin films. Sputter profiles with ion scattering spectroscopy (ISS) indicated that the film thickness is in the range of 2 nm when alkoxide solutions with a concentration of 9 mmol/L are used. The deposition of TiO2 by electron beam evaporation normally resulted in significantly reduced TiO2 films, completely oxidized ones were obtained when deposition was performed at elevated oxygen partial pressures (p(O2) > 2 × 10–5 mbar).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号