首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and selective method for the separation and preconcentration of cadmium in water samples based on solidified floating organic drop microextraction (SFODME) was developed. The cadmium ion in aqueous solution was converted to CdI42− and was then extracted with 160 μL of 1-undecanol containing cationic surfactant of methyltrioctylammonium chloride (0.2 mol/L). When the extraction was completed, the sample vial was cooled in an ice bath for 5 min. The solidified extract was transferred into a conical vial where it melted immediately. It was then diluted to 250 μL upon addition of ethanol, and 100 μL of it was analyzed by flow injection flame atomic absorption spectrometry (FI-FAAS).Factors that influence the extraction and ion pair formation, such as pH, concentration of iodide and methyltrioctylammonium chloride, extraction time, sample volume, and ionic strength were optimized. Under the optimized conditions, a preconcentration factor of 640, detection limit of 0.0079 μg/L and good relative standard deviation of ±5.4% at 5 μg/L were obtained. The procedure was applied to tap water, well water, and sea water; and accuracy was assessed through recovery experiment and independent analysis by graphite atomic absorption spectrometry. The accuracy was also evaluated through analyses of certified reference ore.  相似文献   

2.
In the present study, a novel method based on solidified floating organic drop microextraction (SFODME) combined with syringe membrane micro-solid phase extraction (SMMSPE) was proposed for the sequential separation and enrichment of Tl(III) and Tl(I) followed by graphite furnace atomic absorption spectrometry detection. In SFODME, Tl(III) can react with 1-(2-Pyridylazo)-2-naphthol at pH 8.0 to form the complexes which can be extracted into an organic drop, while Tl(I) was remained in the solution. In SMMSPE, flexible TiO2@SiO2 nanofiber membrane was used as the sorbent for the enrichment of Tl(I) in the sample solution after the separation of Tl(III). This method did not require tedious pre-oxidation/pre-reduction operation and time-consuming centrifugation/filtration steps, which may cause sample contamination and analysis errors. Main parameters influencing the separation and enrichment of the target species were studied. Under the selected conditions, the detection limits for this method were 1.7 and 2.6 ng/L for Tl(III) and Tl(I) with relative standard deviations of 6.1 % and 5.2 %, respectively. This method was successfully used for the determination of the target species in environmental water samples and two certified reference materials. The determined values were in good agreement with the certified values.  相似文献   

3.
Pei Liang  Rui Liu  Jing Cao 《Mikrochimica acta》2008,160(1-2):135-139
Single drop microextraction combined with graphite furnace atomic absorption spectrometry is introduced for the determination of trace lead in water samples. A drop of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) dissolved in benzene was held at the tip of a microsyringe and immerged into the sample solution which was stirred, the solvent drop interacts with the sample solution, and the analyte was extracted into the drop and concentrated. After extracting for a period of time, the drop was retracted into the microsyringe and directly injected into graphite furnace for GFAAS determination of Pb. Several factors affecting the extraction efficiency, such as pH of sample solution, drop volume, stirring rate and extraction time, were optimized. Under the optimized conditions, an enhancement factor of 16 was achieved, and the detection limits for Pb were 25 ng L−1. The relative standard deviation for seven replicate determination of 10 ng mL−1 Pb was 6.1%. The method was applied to determine trace Pb in biological samples with satisfactory results. Correspondence: Pei Liang, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China  相似文献   

4.
建立了以二乙基二硫代氨基甲酸钠为配位剂,十二醇为萃取剂,乙醇为分散剂的悬浮固化分散液-液微萃取—火焰原子吸收光谱法测定水样中痕量铅的方法。详细探讨了影响萃取效率的因素。优化条件为:二乙基二硫代氨基甲酸钠的用量为10-6 mol,十二醇体积为90.00μL,乙醇体积为1.00 mL,pH为7.00。在最佳条件下,铅的检出限为1.12μg/L,富集倍率为16.00,线性范围5.00~600.00μg/L,对含有20.00μg/L和600.00μg/L Pb的标准溶液平行萃取测定11次,测定结果的RSD分别为3.73%和2.62%。本方法应用于自来水、河水及海水中痕量铅的分析,加标回收率为90.10%~100.70%。  相似文献   

5.
A simple, rapid and inexpensive solidified floating organic drop microextraction (SFODME) and flow injection flame atomic absorption spectrometric determination (FI-FAAS) method for copper were developed. 3-amino-7-dimethylamino-2-methylphenazine (Neutral red, NR) was used as the complexing agent. Several factors affecting the microextraction efficiency, such as, pH, NR and sodium dodecylbenzenesulfonate (SDBS) concentration, extraction time, stirring rate, and temperature were investigated and optimized. Under optimized experimental conditions an enrichment factor of 541 was obtained for 100 mL of sample solution. The calibration graph was linear in the range of 0.5–20.0 ng mL− 1 and the limit of detection (3 s) was 0.18 ng mL− 1, the limit of quantification (10 s) was 0.58 ng mL− 1. The relative standard deviation (RSD) for 10 replicate measurements of 10 ng mL− 1 copper was 2.7%. The developed method was successfully applied to the extraction and determination of copper in different certified reference materials (Estuarine water, Slew 3 and fortified water, TM 23.2) and real water samples and satisfactory results were obtained.  相似文献   

6.
Pei Liang  Ehong Zhao  Feng Li 《Talanta》2009,77(5):1854-1857
A new method for the determination of palladium was developed by dispersive liquid-liquid microextraction preconcentration and graphite furnace atomic absorption spectrometry detection. In the proposed approach, diethyldithiocarbamate (DDTC) was used as a chelating agent, and carbon tetrachloride and ethanol were selected as extraction and dispersive solvent. Some factors influencing the extraction efficiency of palladium and its subsequent determination, including extraction and dispersive solvent type and volume, pH of sample solution, concentration of the chelating agent and extraction time, were studied and optimized. Under the optimum conditions, the enrichment factor of this method for palladium reached at 156. The detection limit for palladium was 2.4 ng L−1 (3σ), and the relative standard deviation (R.S.D.) was 4.3% (n = 7, c = 1.0 ng mL−1). The method was successfully applied to the determination of trace amount of palladium in water samples.  相似文献   

7.
A novel dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) for separation/preconcentration of ultra trace amount of vanadium and its determination with the electrothermal atomic absorption spectrometry (ETAAS) was developed. The DLLME-SFO behavior of vanadium (V) using N-benzoyl-N-phenylhydroxylamine (BPHA) as complexing agent was systematically investigated. The factors influencing the complex formation and extraction by DLLME-SFO method were optimized. Under the optimized conditions: 100 μL, 200 μL and 25 mL of extraction solvent (1-undecanol), disperser solvent (acetone) and sample volume, respectively, an enrichment factor of 184, a detection limit (based on 3Sb/m) of 7 ng L−1 and a relative standard deviation of 4.6% (at 500 ng L−1) were obtained. The calibration graph using the preconcentration system for vanadium was linear from 20 to 1000 ng L−1 with a correlation coefficient of 0.9996. The method was successfully applied for the determination of vanadium in water and parsley.  相似文献   

8.
Rojas FS  Ojeda CB  Pavón JM 《Talanta》2006,70(5):979-983
A flow injection (FI) system was used to develop an efficient on-line sorbent extraction preconcentration system for palladium by graphite furnace atomic absorption spectrometry (GFAAS). The investigated metal was preconcentrated on a microcolumn packed with 1,5-bis(di-2-pyridyl)methylene thiocarbohydrazide immobilized on silica gel (DPTH-gel). The palladium is eluted with 40 μl of HCl 4 M and directly introduced into the graphite furnace. The detection limit for palladium under the optimum conditions was 0.4 ng ml−1. This procedure was employed to determine palladium in different samples.  相似文献   

9.
建立了以十一醇为萃取剂,吡咯烷二硫代甲酸铵(APDC)为螯合剂的浮动液滴固化分散液相微萃取-火焰原子吸收光谱法(DLLME-SFO-FAAS)测定环境样品中痕量镉的分析方法;优化了分散剂、萃取剂的类型和体积,考察了溶液pH值、APDC浓度以及萃取温度和时间对萃取效率的影响.结果表明,该法检出限(3σ)为0.14μg/L...  相似文献   

10.
Dispersive liquid-liquid microextraction (DLLME) technique was successfully used as a sample preparation method for graphite furnace atomic absorption spectrometry (GF AAS). In this extraction method, 500 μL methanol (disperser solvent) containing 34 μL carbon tetrachloride (extraction solvent) and 0.00010 g ammonium pyrrolidine dithiocarbamate (chelating agent) was rapidly injected by syringe into the water sample containing cadmium ions (interest analyte). Thereby, a cloudy solution formed. The cloudy state resulted from the formation of fine droplets of carbon tetrachloride, which have been dispersed, in bulk aqueous sample. At this stage, cadmium reacts with ammonium pyrrolidine dithiocarbamate, and therefore, hydrophobic complex forms which is extracted into the fine droplets of carbon tetrachloride. After centrifugation (2 min at 5000 rpm), these droplets were sedimented at the bottom of the conical test tube (25 ± 1 μL). Then a 20 μL of sedimented phase containing enriched analyte was determined by GF AAS.Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of the chelating agent have been optimized. Under the optimum conditions, the enrichment factor 125 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the rage of 2-20 ng L−1 with detection limit of 0.6 ng L−1. The relative standard deviation (R.S.D.s) for ten replicate measurements of 20 ng L−1 of cadmium was 3.5%. The relative recoveries of cadmium in tap, sea and rivers water samples at spiking level of 5 and 10 ng L−1 are 108, 95, 87 and 98%, respectively. The characteristics of the proposed method have been compared with cloud point extraction (CPE), on-line liquid-liquid extraction, single drop microextraction (SDME), on-line solid phase extraction (SPE) and co-precipitation based on bibliographic data. Therefore, DLLME combined with GF AAS is a very simple, rapid and sensitive method, which requires low volume of sample (5.00 mL).  相似文献   

11.
Arpa Şahin C  Durukan I 《Talanta》2011,85(1):657-661
In this article, a new ligandless solidified floating organic drop microextraction (LL-SFODME) method has been developed for preconcentration of trace amount of cadmium as a prior step to its determination by flow injection-flame atomic absorption spectrometry (FI-FAAS). The methodology is based on the SFODME of cadmium with 1-dodecanol in the absence of chelating agent. Several factors affecting the microextraction efficiency, such as, pH, sodium dodecylbenzenesulfonate (SDBS) concentration, extraction time, stirring rate and temperature were investigated and optimized. Under optimized experimental conditions an enhancement factor of 205 was obtained for 100 mL of sample solution. The calibration graph was linear in the range of 1.0-25.0 ng mL−1, the limit of detection (3s) was 0.21 ng mL−1 and the limit of quantification (10s) was 0.62 ng mL−1. The relative standard deviation (RSD) for 10 replicate measurements of 10 ng mL−1 cadmium was 4.7%. The developed method was successfully applied to the extraction and determination of cadmium in standard and several water samples and satisfactory results were obtained.  相似文献   

12.
采用石墨炉原子吸收光谱法测定茶叶中铅,以NH4H2PO4作为基体改进剂,提高了测定的灰化温度,消除了基体干扰.方法简便,快速,准确度高.通过对标准物质的多次测定,结果均在其保证值范围内,相对标准偏差为2.8%.对样品进行加标回收试验,回收率为96%~105%,方法检出限为0.12μg/L.  相似文献   

13.
A novel,simple,rapid,efficient and environment-friendly method for the determination of trace copper in cereal samples was developed by using dispersive liquid-liquid microextraction based on solidification of floating organic drop(DLLME-SFO) followed by flame atomic absorption spectrometry.In the DLLME-SFO,copper was complexed with 8-hydroxy quinoline and extracted into a small volume of 1-dodecanol,which is of low density,low toxicity and proper melting point near room temperature. The experimental parameters affecting the extraction efficiency were investigated and optimized.Under the optimum conditions, the calibration graph exhibited linearity over the range of 0.5—500 ng/mL with the correlation coefficient(r) of 0.9996.The enrichment factor was 122 and the limit of detection was 0.1 ng/mL.The method was applied to the determination of copper in the complex matrix samples such as rice and millet with the recoveries for the spiked samples at 5.0 and 10.0 u,g/g falling in the range of 92.0-98.0%and the relative standard deviation of 3.9-5.7%.  相似文献   

14.
Tokman N  Akman S  Ozeroglu C 《Talanta》2004,63(3):699-703
In this study, a water-soluble polymer, polyvinylpyrrolidinone (PVP) having chelating functionalities was used for the preconcentration and separation of traces of Pb, Cu, Ve and Mn prior to their determination by graphite furnace atomic absorption spectrometry. For this purpose, the sample and the PVP solutions were mixed and the metal bound polymer was precipitated by adding the mixture onto acetone. The precipitate was separated by decantation and dissolved with water. By increasing the ratio of the volumes of sample to water used in dissolving the precipitate, the analyte elements were concentrated as needed. The concentration of trace elements was determined using graphite furnace atomic absorption spectrometry. The analyte elements in matrix free aqueous solutions were quantitatively recovered. The validity of the proposed method was checked with a standard reference material (NIST SRM 1577b bovine liver) and spiked fruit juice, sea water and mineral water samples. The analytical results were found to be in good agreement with certified and added values. Detection limits (3δ) were 1.7, 3.6 and 4.1 μg l−1 for Pb, Cu and Mn, respectively, using 10 μl of sample volume. The method is novel and can be characterized by rapidity, simplicity, quantitative recovery and high reproducibility.  相似文献   

15.
A new and simple method was developed for preconcentration trace amount of gold in aqueous and mineral samples. The method was based on the sorption of gold on granular activated carbon (AC) in acidic medium (hydrochloric acid) and subsequently direct determination by graphite furnace atomic absorption spectrometry (GFAAS). A small particle of adsorbent was delivered to small volume of sample. After extraction, AC removed and analyzed directly by GFAAS. Several factors influencing the extraction efficiency, such as the hydrochloric acid concentration, sample volume and extraction time were studied as well as effect of potential interfering ions. The preconcentration factor 50 was obtained. The limit of detection (LOD) of gold in water and soil samples was 0.007 μg L− 1 and 0.9 ng g− 1, respectively. The proposed method was applied successfully to the determination of trace amount of gold in environmental and geological samples. In order to validate the developed method, two certified reference materials: Platinum Ore (SARM-7B) and Copper Ore Mill Heads (No. 330) were analyzed and the determined values obtained were in good agreement with the certified values and recovery was obtained in the range of 80-118%. The relative standard deviations (RSD) for the spiking levels of 0.5 μg L− 1 in the real samples was 4%, (n = 15).  相似文献   

16.
The determination of trace elements in crude oil is difficult due to the complex nature of the sample and the various different chemical forms in which the metals can occur. The advantage of graphite furnace atomic absorption spectrometry is that only a minimum of sample pretreatment is required. In this work two techniques have been compared to establish a fast and reliable method for lead determination in crude oil. In the first one the crude oil samples were weighed directly onto solid sampling (SS) platforms and introduced into the graphite tube for analysis. In the second one the samples were prepared as oil-in-water emulsions and analyzed in a filter furnace (FF). Twenty μL of a mixture of 0.5 mg L− 1 Pd + 0.3 mg L− 1 Mg + Triton X-100 has been used as the modifier, and calibration against aqueous solutions has been used for both methods. The sensitivity obtained with the FF was more than a factor of two better than that with SS; however, as a larger sample mass could be introduced in the latter case, so that the limits of detection for both techniques were 0.004 mg kg− 1. Seven crude oil samples were analyzed using the two procedures, and all results were in agreement at a 95% confidence level using a paired Student's t-test. For validation purposes, three crude oil samples have been mineralized using an open-vessel acid digestion, and the results were in agreement with those found with direct sampling and with emulsion sampling using FF according to ANOVA test. Both methods are simple, fast and reliable, being appropriated for routine analysis; however, the direct method using SS technology should be preferred because of its simplicity, speed and commercial availability.  相似文献   

17.
An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included.  相似文献   

18.
王涛 《分析试验室》2002,21(6):47-49
研究了石墨炉原子化法测定钢铁中痕量铅的干扰情况,并进行了干扰抑制实验。提出了抑制干扰的方法。  相似文献   

19.
This work shows the potentiality of As as internal standard to compensate errors from sampling of sparkling drinking water samples in the determination of selenium by graphite furnace atomic absorption spectrometry. The mixture Pd(NO3)2/Mg(NO3)2 was used as chemical modifier. All samples and reference solutions were automatically spiked with 500 μg l−1 As and 0.2% (v/v) HNO3 by the autosampler, eliminating the need for manual dilutions. For 10 μl dispensed sample into the graphite tube, a good correlation (r=0.9996) was obtained between the ratio of analyte absorbance by the internal standard absorbance and the analyte concentrations. The relative standard deviations (R.S.D.) of measurements varied from 0.05 to 2% and from 1.9 to 5% (n=12) with and without internal standardization, respectively. The limit of detection (LD) based on integrated absorbance was 3.0 μg l−1 Se. Recoveries in the 94-109% range for Se spiked samples were obtained. Internal standardization (IS) improved the repeatability of measurements and increased the lifetime of the graphite tube in ca. 15%.  相似文献   

20.
Pei Liang  Linlin Zhang  Ehong Zhao 《Talanta》2010,82(3):993-2983
A novel displacement-dispersive liquid-liquid microextraction method was developed for the selective determination of trace silver in complicated samples by graphite furnace atomic absorption spectrometry. This method involves two steps of dispersive liquid-liquid microextraction (DLLME). Firstly, copper ion reacted with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex and extracted with DLLME procedure using carbon tetrachloride (extraction solvent) and methanol (dispersive solvent); then, the sedimented phase was dispersed into the sample solution containing silver ion with methanol and another DLLME procedure was carried out. Because the stability of Ag-DDTC is larger than that of Cu-DDTC, Ag+ can displace Cu2+ from the pre-extracted Cu-DDTC and thus the preconcentration of Ag+ was achieved. Potential interference from co-existing transition metal ions with lower DDTC complex stability was largely eliminated as they cannot displace Cu2+ from Cu-DDTC complex. The tolerance limits for the co-existing ions were increased by a long way compared with conventional DLLME. Under the optimal conditions, the limit of detection was 20 ng L−1 (3σ) for silver with a sample volume of 5.0 mL, and an enhancement factor of 72 was achieved. The proposed method was successfully applied to determine of trace silver in some environmental and geological samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号