首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a fully discrete defect-correction mixed finite element method (MFEM) for solving the non-stationary conduction-convection problems in two dimension, which is leaded by combining the Back Euler time discretization with the two-step defect correction in space, is presented. In this method, we solve the nonlinear equations with an added artificial viscosity term on a finite element grid and correct these solutions on the same grid using a linearized defect-correction technique. The stability and the error analysis are derived. The theory analysis shows that our method is stable and has a good convergence property. Some numerical results are also given, which show that this method is highly efficient for the unsteady conduction-convection problems.  相似文献   

2.
In this paper, a new defect correction method for the Navier-Stokes equations is presented. With solving an artificial viscosity stabilized nonlinear problem in the defect step, and correcting the residual by linearized equations in the correction step for a few steps, this combination is particularly efficient for the Navier-Stokes equations at high Reynolds numbers. In both the defect and correction steps, we use the Oseen iterative scheme to solve the discrete nonlinear equations. Furthermore, the stability and convergence of this new method are deduced, which are better than that of the classical ones. Finally, some numerical experiments are performed to verify the theoretical predictions and show the efficiency of the new combination.  相似文献   

3.
A numerical method based on cubic splines with nonuniform grid is given for singularly-perturbed nonlinear two-point boundary-value problems. The original nonlinear equation is linearized using quasilinearization. Difference schemes are derived for the linear case using a variable-mesh cubic spline and are used to solve each linear equation obtained via quasilinearization. Second-order uniform convergence is achieved. Numerical examples are given in support of the theoretical results.  相似文献   

4.
In this study, a fully discrete defect correction finite element method for the unsteady incompressible Magnetohydrodynamics (MHD) equations, which is leaded by combining the Back Euler time discretization with the two-step defect correction in space, is presented. It is a continuous work of our formal paper [Math Method Appl Sci. 2017. DOI:10.1002/mma.4296]. The defect correction method is an iterative improvement technique for increasing the accuracy of a numerical solution without applying a grid refinement. Firstly, the nonlinear MHD equation is solved with an artificial viscosity term. Then, the numerical solutions are improved on the same grid by a linearized defect-correction technique. Then, we introduce the numerical analysis including stability analysis and error analysis. The numerical analysis proves that our method is stable and has an optimal convergence rate. Some numerical results [see Math Method Appl Sci. 2017. DOI:10.1002/mma.4296] show that this method is highly efficient for the unsteady incompressible MHD problems.  相似文献   

5.
In this study, the numerical solutions of a system of two nonlinear integro-differential equations, which describes biological species living together, are derived employing the well-known Homotopy-perturbation method. The approximate solutions are in excellent agreement with those obtained by the Adomian decomposition method. Furthermore, we present an analytical approximate solution for a more general form of the system of nonlinear integro-differential equations. The numerical result indicates that the proposed method is straightforward to implement, efficient and accurate for solving nonlinear integro-differential equations.  相似文献   

6.
《Applied Mathematical Modelling》2014,38(21-22):4958-4971
In this paper, we present a numerical scheme using uniform Haar wavelet approximation and quasilinearization process for solving some nonlinear oscillator equations. In our proposed work, quasilinearization technique is first applied through Haar wavelets to convert a nonlinear differential equation into a set of linear algebraic equations. Finally, to demonstrate the validity of the proposed method, it has been applied on three type of nonlinear oscillators namely Duffing, Van der Pol, and Duffing–van der Pol. The obtained responses are presented graphically and compared with available numerical and analytical solutions found in the literature. The main advantage of uniform Haar wavelet series with quasilinearization process is that it captures the behavior of the nonlinear oscillators without any iteration. The numerical problems are considered with force and without force to check the efficiency and simple applicability of method on nonlinear oscillator problems.  相似文献   

7.
The linearization and correction method (LCM) proposed by He is a simple and effective perturbation technique to solve nonlinear equations. To analyze the random properties of rill erosion model, a new stochastic perturbation technique called linearized perturbation method is developed by combining the traditional stochastic perturbation method with the LCM. Comparisons between the numerical results obtained by the linearized perturbation method and those obtained by Monte Carlo method indicated an excellent agreement. However, the calculation efficiency of the linearized perturbation method is higher.  相似文献   

8.
This paper presents an efficient method of solving Queen's linearized equations for steady plane flow of an incompressible, viscous Newtonian fluid past a cylindrical body of arbitrary cross-section. The numerical solution technique is the well known direct boundary element method. Use of a fundamental solution of Oseen's equations, the ‘Oseenlet’, allows the problem to be reduced to boundary integrals and numerical solution then only requires boundary discretization. The formulation and solution method are validated by computing the net forces acting on a single circular cylinder, two equal but separated circular cylinders and a single elliptic cylinder, and comparing these with other published results. A boundary element representation of the full Navier-Stokes equations is also used to evaluate the drag acting on a single circular cylinder by matching with the numerical Oseen solution in the far field.  相似文献   

9.
In this report, we give a semi‐discrete defect correction finite element method for the unsteady incompressible magnetohydrodynamics equations. The defect correction method is an iterative improvement technique for increasing the accuracy of a numerical solution without applying a grid refinement. Firstly, the nonlinear magnetohydrodynamics equations is solved with an artificial viscosity term. Then, the numerical solutions are improved on the same grid by a linearized defect‐correction technique. Then, we give the numerical analysis including stability analysis and error analysis. The numerical analysis proves that our method is stable and has an optimal convergence rate. In order to show the effect of our method, some numerical results are shown. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
In this article, we consider the laminar oscillatory flow in a low aspect ratio channel with porous walls. For small-amplitude pressure oscillations, we derive asymptotic formulations for the flow parameters using three different perturbation approaches. The undisturbed state is represented by an arbitrary mean-flow solution satisfying the Berman equation. For uniform wall injection, symmetric solutions are obtained for the temporal field from both the linearized vorticity and momentum transport equations. Asymptotic solutions that have dissimilar expressions are compared and shown to agree favourably with one another and with numerical experiments. In fact, numerical simulations of both linearly perturbed and nonlinear Navier-Stokes equations are used for validation purposes. As we insist on verifications, the absolute error associated with the total time-dependent velocities is analysed. The order of the cumulative error is established and the formulation based on the two-variable multiple-scale approach is found to be the most general and accurate. The explicit formulations help unveil interesting technical features and vortical structures associated with the oscillatory wave character. A similarity parameter is shown to exist in all formulations regardless of the mean-flow selection.  相似文献   

11.
This paper is devoted to the numerical study of the boundary value problems for nonlinear singularly perturbed differential-difference equations with small delay. Quasilinearization process is used to linearize the nonlinear differential equation. After applying the quasilinearization process to the nonlinear problem, a sequence of linearized problems is obtained. To obtain parameter-uniform convergence, a piecewise-uniform mesh is used, which is dense in the boundary layer region and coarse in the outer region. The parameter-uniform convergence analysis of the method has been discussed. The method has shown to have almost second-order parameter-uniform convergence. The effect of small shift on the boundary layer(s) has also been discussed. To demonstrate the performance of the proposed scheme two examples have been carried out. The maximum absolute errors and uniform rates of convergence have been presented in the form of the tables.  相似文献   

12.
The authors study the Rayleigh-Taylor instability for two incompressible immis- cible fluids with or without surface tension, evolving with a free interface in the presence of a uniform gravitational field in Eulerian coordinates. To deal with the free surface, instead of using the transformation to Lagrangian coordinates, the perturbed equations in Eule- rian coordinates are transformed to an integral form and the two-fluid flow is formulated as a single-fluid flow in a fixed domain, thus offering an alternative approach to deal with the jump conditions at the free interface. First, the linearized problem around the steady state which describes a denser immiscible fluid lying above a light one with a free interface separating the two fluids, both fluids being in (unstable) equilibrium is analyzed. By a general method of studying a family of modes, the smooth (when restricted to each fluid domain) solutions to the linearized problem that grow exponentially fast in time in Sobolev spaces are constructed, thus leading to a global instability result for the linearized problem. Then, by using these pathological solutions, the global instability for the corresponding nonlinear problem in an appropriate sense is demonstrated.  相似文献   

13.
A full multigrid finite element method is proposed for semilinear elliptic equations. The main idea is to transform the solution of the semilinear problem into a series of solutions of the corresponding linear boundary value problems on the sequence of finite element spaces and semilinear problems on a very low dimensional space. The linearized boundary value problems are solved by some multigrid iterations. Besides the multigrid iteration, all other efficient numerical methods can also serve as the linear solver for solving boundary value problems. The optimality of the computational work is also proved. Compared with the existing multigrid methods which need the bounded second order derivatives of the nonlinear term, the proposed method only needs the Lipschitz continuation in some sense of the nonlinear term.  相似文献   

14.
本文在处理几何非线性问题时,利用在变分方程中引入振动过程,得到各级变分摄动方程,并通过有限元法求解.由于有限元法能成功地处理各种复杂边界条件、几何形状的力学问题,摄动法又可将非线性问题转化为线性问题求解.若结合这两种方法的优点,将能够解决大量复杂的非线性力学问题.并能够消除单独使用有限元法或摄动法求解复杂非线性问题所出现的困难. 本文应用摄动有限元法求解了一般轴对称壳的几何非线性问题.  相似文献   

15.
This paper presents a mathematical model for photo-excited carrier decay in a semiconductor. Due to the carrier trapping states and recombination centers in the bandgap, the carrier decay process is defined by the system of nonlinear differential equations. The system of nonlinear ordinary differential equations is approximated by linearized backward Euler scheme. Some a priori estimates of the discrete solution are obtained and the convergence of the linearized backward Euler method is proved. The identifiability analysis of the parameters of deep centers is performed and the fitting of the model to experimental data is done by using the genetic optimization algorithm. Results of numerical experiments are presented.  相似文献   

16.
In this paper, an efficient method for solving nonlinear Stratonovich Volterra integral equations is proposed. By using Bernoulli polynomials and their stochastic operational matrix of integration, these equations can be reduced to the system of nonlinear algebraic equations with unknown Bernoulli coefficient which can be solved by numerical methods such as Newton’s method. Also, an error analysis is valid under fairly restrictive conditions. Furthermore, in order to show the accuracy and reliability of the proposed method, the new approach is compared with the block pulse functions method by some examples. The obtained results reveal that the proposed method is more accurate and efficient than the block pulse functions method.  相似文献   

17.
Adaptive multilevel finite element methods are developed and analyzed for certain elliptic systems arising in geometric analysis and general relativity. This class of nonlinear elliptic systems of tensor equations on manifolds is first reviewed, and then adaptive multilevel finite element methods for approximating solutions to this class of problems are considered in some detail. Two a posteriori error indicators are derived, based on local residuals and on global linearized adjoint or dual problems. The design of Manifold Code (MC) is then discussed; MC is an adaptive multilevel finite element software package for 2- and 3-manifolds developed over several years at Caltech and UC San Diego. It employs a posteriori error estimation, adaptive simplex subdivision, unstructured algebraic multilevel methods, global inexact Newton methods, and numerical continuation methods for the numerical solution of nonlinear covariant elliptic systems on 2- and 3-manifolds. Some of the more interesting features of MC are described in detail, including some new ideas for topology and geometry representation in simplex meshes, and an unusual partition of unity-based method for exploiting parallel computers. A short example is then given which involves the Hamiltonian and momentum constraints in the Einstein equations, a representative nonlinear 4-component covariant elliptic system on a Riemannian 3-manifold which arises in general relativity. A number of operator properties and solvability results recently established in [55] are first summarized, making possible two quasi-optimal a priori error estimates for Galerkin approximations which are then derived. These two results complete the theoretical framework for effective use of adaptive multilevel finite element methods. A sample calculation using the MC software is then presented; more detailed examples using MC for this application may be found in [26].  相似文献   

18.
This work deals with the numerical simulation, by means of a finite element method, of the time-harmonic propagation of acoustic waves in a moving fluid, using the Galbrun equation instead of the classical linearized Euler equations. This work extends a previous study in the case of a uniform flow to the case of a shear flow. The additional difficulty comes from the interaction between the propagation of acoustic waves and the convection of vortices by the fluid. We have developed a numerical method based on the regularization of the equation which takes these two phenomena into account. Since it leads to a partially full matrix, we use an iterative algorithm to solve the linear system.  相似文献   

19.
对全息测量下的X射线相位衬度断层成像问题提出了一种新的重建算法.该算法的主要想法是利用牛顿迭代法求解非线性的相位恢复问题.我们证明了牛顿方向满足的线性方程是非适定的,并利用共轭梯度法得到方程的正则化解.最后利用模拟数据进行了数值实验,数值结果验证了算法的合理性以及对噪声数据的数值稳定性,同时通过与线性化相位恢复算法的数值结果比较说明了新算法对探测数据不要求限制在Fresnel区域的近场,适用范围更广.  相似文献   

20.
We present a class of orthogonal functions on infinite domain based on Jacobi polynomials. These functions are generated by applying a tanh transformation to Jacobi polynomials. We construct interpolation and projection error estimates using weighted pseudo-derivatives tailored to the involved mapping. Then, using the nodes of the newly introduced tanh Jacobi functions, we develop an efficient spectral tanh Jacobi collocation method for the numerical simulation of nonlinear Schrödinger equations on the infinite domain without using artificial boundary conditions. The applicability and accuracy of the solution method are demonstrated by two numerical examples for solving the nonlinear Schrödinger equation and the nonlinear Ginzburg–Landau equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号