首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 116 毫秒
1.
We examine the different ways a set ofn points in the plane can be connected to form a simple polygon. Such a connection is called apolygonization of the points. For some point sets the number of polygonizations is exponential in the number of points. For this reason we restrict our attention to star-shaped polygons whose kernels have nonempty interiors; these are callednondegenerate star-shaped polygons.We develop an algorithm and data structure for determining the nondegenerate star-shaped polygonizations of a set ofn points in the plane. We do this by first constructing an arrangement of line segments from the point set. The regions in the arrangement correspond to the kernels of the nondegenerate star-shaped polygons whose vertices are the originaln points. To obtain the data structure representing this arrangement, we show how to modify data structures for arrangements of lines in the plane. This data structure can be computed inO(n 4) time and space. By visiting the regions in this data structure in a carefully chosen order, we can compute the polygon associated with each region inO(n) time, yielding a total computation time ofO(n 5) to compute a complete list ofO(n 4) nondegenerate star-shaped polygonizations of the set ofn points.  相似文献   

2.
In the stable0–1 sorting problem the task is to sort an array ofn elements with two distinct values such that equal elements retain their relative input order. Recently, Munro, Raman and Salowe gave an algorithm which solves this problem inO(n log*n) time and constant extra space. We show that by a modification of their method the stable0–1 sorting is possible inO(n) time andO(1) extra space. Stable three-way partitioning can be reduced to stable0–1 sorting. This immediately yields a stable minimum space quicksort, which sorts multisets in asymptotically optimal time with high probability.  相似文献   

3.
A setP ofn points inR d is called simplicial if it has dimensiond and contains exactlyd + 1 extreme points. We show that whenP containsn interior points, there is always one point, called a splitter, that partitionsP intod + 1 simplices, none of which contain more thandn/(d + 1) points. A splitter can be found inO(d 4 +nd 2) time. Using this result, we give anO(nd 4 log1+1/d n) algorithm for triangulating simplicial point sets that are in general position. InR 3 we give anO(n logn +k) algorithm for triangulating arbitrary point sets, wherek is the number of simplices produced. We exhibit sets of 2n + 1 points inR 3 for which the number of simplices produced may vary between (n – 1)2 + 1 and 2n – 2. We also exhibit point sets for which every triangulation contains a quadratic number of simplices.Research supported by the Natural Science and Engineering Research Council grant A3013 and the F.C.A.R. grant EQ1678.  相似文献   

4.
One of the fundamental algorithmic problems in computer science involves selecting thekth smallest element in a setS ofn elements. In this paper we present a fast selection algorithm which runs inO(n 1/8 logn) time on a mesh with multiple broadcasting of sizen 3/8 ×n 5/8. Our result shows that, just like semigroup computations, selection can be done much faster on a suitably chosen rectangular mesh than on square meshes. We also show that if every processor can storen 1/9 items, then our selection algorithm runs inO(n 1/9 logn) time on a mesh with multiple broadcasting of sizen 1/3 ×n 5/9.Work supported by NASA under grant NCC1-99.This author was partly supported by NSF grant CCR-8009996.  相似文献   

5.
Given a fixed setS ofn points inE 3 and a query plane, the halfspace range search problem asks for the retrieval of all points ofS on a chosen side of. We prove that withO(n(logn)8 (loglogn)4) storage it is possible to solve this problem inO(k+logn) time, wherek is the number of points to be reported. This result rests crucially on a new combinatorial derivation. We show that the total number ofj-sets (j=1, ...,k) realized by a set ofn points inE 3 isO(nk 5); ak-set is any subset ofS of sizek which can be separated from the rest ofS by a plane.Supported in part by NSF grants MCS 83-03925 and the Office of Naval Research and the Defense Advanced Research Projects Agency under contract N00014-83-K-0146 and ARPA Order No. 4786.Supported in part by Joint Services Electronics Program under Contract N00014-79-C-0424.  相似文献   

6.
Ray Shooting Amidst Convex Polygons in 2D   总被引:1,自引:0,他引:1  
We consider the problem of ray shooting in a two-dimensional scene consisting ofmconvex polygons with a total ofnedges. We present a data structure that requiresO(mn log m) space and preprocessing time and that answers a ray shooting query inO(log2 m log2 n) time. If the polygons are pairwise disjoint, the space and preprocessing time can be improved toO((m2+n)log m) andO((m2+n log n)log m), respectively. Our algorithm also works for a collection of disjoint simple polygons. We also show that if we allow onlyO(n) space, a ray shooting query among a collection of disjoint simple polygons can be answered in timeO(m/[formula]1+ log2 n) time, for any >0.  相似文献   

7.
Applications of random sampling in computational geometry,II   总被引:10,自引:0,他引:10  
We use random sampling for several new geometric algorithms. The algorithms are Las Vegas, and their expected bounds are with respect to the random behavior of the algorithms. These algorithms follow from new general results giving sharp bounds for the use of random subsets in geometric algorithms. These bounds show that random subsets can be used optimally for divide-and-conquer, and also give bounds for a simple, general technique for building geometric structures incrementally. One new algorithm reports all the intersecting pairs of a set of line segments in the plane, and requiresO(A+n logn) expected time, whereA is the number of intersecting pairs reported. The algorithm requiresO(n) space in the worst case. Another algorithm computes the convex hull ofn points inE d inO(n logn) expected time ford=3, andO(n [d/2]) expected time ford>3. The algorithm also gives fast expected times for random input points. Another algorithm computes the diameter of a set ofn points inE 3 inO(n logn) expected time, and on the way computes the intersection ofn unit balls inE 3. We show thatO(n logA) expected time suffices to compute the convex hull ofn points inE 3, whereA is the number of input points on the surface of the hull. Algorithms for halfspace range reporting are also given. In addition, we give asymptotically tight bounds for (k)-sets, which are certain halfspace partitions of point sets, and give a simple proof of Lee's bounds for high-order Voronoi diagrams.  相似文献   

8.
In this paper we present an algorithm to compute the rectilinear geodesic voronoi neighbor of an arbitrary query pointqamong a setSofmpoints in the presence of a set ofnvertical line segment obstacles inside a rectangular floor. The distance between a pair of points α and β is the shortest rectilinear distance avoiding the obstacles in and is denoted by δ(α, β). The rectilinear geodesic voronoi neighbor of an arbitrary query pointq,RGVN(q) is the pointpiSsuch that δ(q, pi) is minimum. The algorithm suggests a preprocessing of the elements of the setsSand inO((m + n)log(m + n)) time such that for an arbitrary query pointq, theRGVNquery can be answered inO(log(m + n)) time. The space required for storing the preprocessed information isO(n + m log m). If the points inSare placed on the boundary of the rectangular floor, a different technique is adopted to decrease the space complexity toO(m + n). This technique works even if the obstacles are rectangles instead of line segments. Finally, the parallelization of the preprocessing steps for the latter algorithm is suggested, which takesO(log3(m + n)) time, usingO((m + n)1.5/log2(m + n)) processors andO(log(m + n)) query time.  相似文献   

9.
In this paper, parallel algorithms are presented for solving some problems on permutation graphs. The coloring problem is solved inO(log2 n) time usingO(n 3/logn) processors on the CREW PRAM, orO(logn) time usingO(n 3) processors on the CRCW PRAM. The weighted clique problem, the weighted independent set problem, the cliques cover problem, and the maximal layers problem are all solved with the same complexities. We can also show that the longest common subsequence problem belongs to the class NC.  相似文献   

10.
A sort sequence Sn is a sequence of all unordered pairs of indices inI n = {1, 2, ..., n}. With a sort sequenceSn = (s1 ,s2 ,...,s( 2n ) )S_n = (s_1 ,s_2 ,...,s_{\left( {_2^n } \right)} ), one can associate a predictive sorting algorithm A(Sn). An execution of the algorithm performs pairwise comparisons of elements in the input setX in the order defined by the sort sequence Sn except that the comparisons whose outcomes can be inferred from the results of the preceding comparisons are not performed. A sort sequence is said to be extremal if it maximizes a given objective function. First we consider the extremal sort sequences with respect to the objective function ω(Sn) — the expected number of active predictions inS n. We study ω-extremal sort sequences in terms of their prediction vectors. Then we consider the objective function Ω(Sn) — the minimum number of active predictions in Sn over all input orderings.  相似文献   

11.
We introduce the notion ofsearchability as a property of an in place merging algorithm. We show that a pair of sorted arrays can be merged in place in linear time, so that a search can be performed in logarithmic time at any point during the merging process. We apply this method to devise an implicit data structure which can support searches inO(log2 n) time in the worst case, andO(logn) on the average, and insertions inO(logn) time, in the worst case.This research was partly supported by NSERC under grant A8237 and presented in preliminary form at the 10th International Colloquium on Automata, Languages and Programming.On leave from the University of Chile.  相似文献   

12.
Recently, Fredman and Tarjan invented a new, especially efficient form of heap (priority queue). Their data structure, theFibonacci heap (or F-heap) supports arbitrary deletion inO(logn) amortized time and other heap operations inO(1) amortized time. In this paper we use F-heaps to obtain fast algorithms for finding minimum spanning trees in undirected and directed graphs. For an undirected graph containingn vertices andm edges, our minimum spanning tree algorithm runs inO(m logβ (m, n)) time, improved fromO((m, n)) time, whereβ(m, n)=min {i|log(i) nm/n}. Our minimum spanning tree algorithm for directed graphs runs inO(n logn + m) time, improved fromO(n log n +m log log log(m/n+2) n). Both algorithms can be extended to allow a degree constraint at one vertex. Research supported in part by National Science Foundation Grant MCS-8302648. Research supported in part by National Science Foundation Grant MCS-8303139. Research supported in part by National Science Foundation Grant MCS-8300984 and a United States Army Research Office Program Fellowship, DAAG29-83-GO020.  相似文献   

13.
We prove a theorem on partitioning point sets inE d (d fixed) and give an efficient construction of partition trees based on it. This yields a simplex range searching structure with linear space,O(n logn) deterministic preprocessing time, andO(n 1?1/d (logn) O(1)) query time. WithO(nlogn) preprocessing time, where δ is an arbitrary positive constant, a more complicated data structure yields query timeO(n 1?1/d (log logn) O(1)). This attains the lower bounds due to Chazelle [C1] up to polylogarithmic factors, improving and simplifying previous results of Chazelleet al. [CSW]. The partition result implies that, forr dn 1?δ, a (1/r)-approximation of sizeO(r d) with respect to simplices for ann-point set inE d can be computed inO(n logr) deterministic time. A (1/r)-cutting of sizeO(r d) for a collection ofn hyperplanes inE d can be computed inO(n logr) deterministic time, provided thatrn 1/(2d?1).  相似文献   

14.
Given a digraph D on vertices v1, v2, ?, vn, we can associate a bipartite graph B(D) on vertices s1, s2, ?, sn, t1, t2, ?, tn, where sitj is an edge of B(D) if (vi, vj) is an arc in D. Let OG denote the set of all orientations on the (undirected) graph G. In this paper we will discuss properties of the set S(G) := {β1 (B(D))) | D ? OG}, where β1 is the edge independence number. In the first section we present some background and related concepts. We show that sets of the form S(G) are convex and that max S(G) ≦ 2 min S(G). Furthermore, this completely characterizes such sets. In the second section we discuss some bounds on elements of S(G) in terms of more familiar graphical parameters. The third section deals with extremal problems. We discuss bounds on elements of S(G) if the order and size of G are known, particularly when G is bipartite. In this section we exhibit a relation between max S(G) and the concept of graphical closure. In the fourth and final section we discuss the computational complexity of computing min S(G) and max S(G). We show that the first problem is NP-complete and that the latter is polynomial.  相似文献   

15.
A new data structure called ordered priority queue is introduced in this paper. Elements stored in the data structure have a primary order (key) and a secondary order (priority) associated with them. An ordered min-priority queue allows users to find the minimum priority element in any range (according to key order) inO(logn) time. Such a data structure withn elements can be created inO(n logn) time usingO(n) storage. A specific implementation based on median split trees is presented. Sequential access of the elements can be done inO(n log logn) time andO(logn) extra storage.This work was supported in part by NASA under grant NAG 5-739.  相似文献   

16.
A sort sequenceS n is a sequence of all unordered pairs of indices inI n = 1, 2, ...,n. With a sort sequenceS n, we associate a sorting algorithmA(S n) to sort input setX = x 1, x2, ..., xn as follows. An execution of the algorithm performs pairwise comparisons of elements in the input setX as defined by the sort sequenceS n, except that the comparisons whose outcomes can be inferred from the outcomes of the previous comparisons are not performed. Let χ(S n) denote the average number of comparisons required by the algorithmA(S n assuming all input orderings are equally likely. Let χ*(n) and χ°(n) denote the minimum and maximum values, respectively, of χ(S n) over all sort sequencesS n. Exact determination of χ*(n), χO(n) and associated extremal sort sequences seems difficult. Here, we obtain bounds on χ*(n) and χO(n).  相似文献   

17.
We achieve anO(log n) amortized time bound per operation for the off-line version of the dynamic convex hull problem in the plane. In this problem, a sequence ofninsert,delete, andqueryinstructions are to be processed, where each insert instruction adds a new point to the set, each delete instruction removes an existing point, and each query requests a standard convex hull search. We process the entire sequence in totalO(n log n) time andO(n) space. Alternatively, we can preprocess a sequence ofninsertions and deletions inO(n log n) time and space, then answer queries in history inO(log n) time apiece (a query in history means a query comes with a time parametert, and it must be answered with respect to the convex hull present at timet). The same bounds also hold for the off-line maintenance of several related structures, such as the maximal vectors, the intersection of half-planes, and the kernel of a polygon. Achieving anO(log n) per-operation time bound for theon-lineversions of these problems is a longstanding open problem in computational geometry.  相似文献   

18.
We give two optimal parallel algorithms for constructing the arrangement ofn lines in the plane. The first nethod is quite simple and runs inO(log2 n) time usingO(n 2) work, and the second method, which is more sophisticated, runs inO(logn) time usingO(n 2) work. This second result solves a well-known open problem in parallel computational geometry, and involves the use of a new algorithmic technique, the construction of an -pseudocutting. Our results immediately imply that the arrangement ofn hyperplanes in d inO(logn) time usingO(n d) work, for fixedd, can be optimally constructed. Our algorithms are for the CREW PRAM.This research was supported by the National Science Foundation under Grants CCR-8810568 and CCR-9003299, and by the NSF and DARPA under Grant CCR-8908092.  相似文献   

19.
Pseudorandom generators for space-bounded computation   总被引:4,自引:0,他引:4  
Noam Nisan 《Combinatorica》1992,12(4):449-461
Pseudorandom generators are constructed which convertO(SlogR) truly random bits toR bits that appear random to any algorithm that runs inSPACE(S). In particular, any randomized polynomial time algorithm that runs in spaceS can be simulated using onlyO(Slogn) random bits. An application of these generators is an explicit construction of universal traversal sequences (for arbitrary graphs) of lengthn O(logn).The generators constructed are technically stronger than just appearing random to spacebounded machines, and have several other applications. In particular, applications are given for deterministic amplification (i.e. reducing the probability of error of randomized algorithms), as well as generalizations of it.This work was done in the Laboratory for Computer Science, MIT, supported by NSF 865727-CCR and ARO DALL03-86-K-017  相似文献   

20.
For a given undirected graphG = (V, E, cG) with edges weighted by nonnegative realscG:ER + , let ΛG(k) stand for the minimum amount of weights which needs to be added to makeG k-edge-connected, and letG*(k) be the resulting graph obtained fromG. This paper first shows that function ΛGover the entire rangek [0, +∞] can be computed inO(nm + n2 log n) time, and then shows that allG*(k) in the entire range can be obtained fromO(n log n) weighted cycles, and such cycles can be computed inO(nm + n2 log n) time, wherenandmare the numbers of vertices and edges, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号