首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The current study presents finite element simulations of shear localization along the interface between cohesionless granular soil and bounding structure under large shearing movement. Micro-polar (Cosserat) continuum approach is applied in the framework of elasto-plasticity in order to overcome the numerical problems of localization modeling seen in the conventional continuum mechanics. The effects of different micro-polar kinematic boundary conditions, along the interface, on the evolution and location of shear band are shown by the numerical results. Furthermore, shear band thickness is also investigated for its dependence on the initial void ratio, vertical pressure and mean grain size. Here, the distribution and evolution of static and kinematic quantities are the main focuses regarding infinite layer of micro-polar material during plane shearing, especially with advanced large movement of bounding structure. The influence of such movement has not been investigated yet in the literature. Based on the results obtained from this study, shear localization appears parallel to the direction of shearing. It occurs either in the middle of granular layer or near boundaries, regarding the assumed micro-polar kinematic boundary conditions at the bottom and top surfaces of granular soil layer. Narrower shear band is observed in lower rotation resistance of soil particles along the interface. It is emphasized that the displacement magnitude of bounding structure has significant effect on the distribution and evolution of state variables and polar quantities in the granular soil layer. However, continuous displacement has no meaningful effect on the thickness of shear band. Here, smooth distributions of void ratio and shear stress components are obtained within the shear band, what the other previous numerical investigations did not receive. Despite indirect linking of Lade’s model to the critical state soil mechanics, state variables tend towards asymptotical stationary condition in large shear deformation.  相似文献   

2.
Shear band spacing in Zr-based bulk metallic glasses (BMGs) under dynamic loads is found to vary with position and local strain rate in the indented region. To investigate the dependence of shear band evolution characteristics on local strain rate and normal stress, a micromechanical model based on momentum diffusion is proposed. The thermo-mechanical model takes into account the normal stress dependence of yield stress, the free volume theory and the associated viscosity change within the shear band region. Temperature rise is obtained from the balance between the heat diffusion to the adjacent regions from a shear band and the heat generation due to the accumulated plastic work in a shear band. The parametric study has revealed that thermal effects play a minor role when the critical shear displacement is below 10 nm (as in nanoindentation) but become significant when the shear displacement accumulated in a shear band is of the order of hundreds of nanometers (as in uniaxial compression and in dynamic indentations). Finally, it is found that the normal stress plays a crucial role in the deformation behavior of BMGs by not only decreasing the time for shear band formation but also increasing the temperature rise significantly.  相似文献   

3.
The tire-soil interaction is numerically simulated using a modified critical state soil model, in conjunction with a new nonlinear elastic law and hardening law, implemented on a general purpose finite element program MARC. A nonlinear friction law is employed for representing the shearing behavior on the tire-soil interface. Numerical results show deformation patterns and stress distributions in the soil, as well as the normal and shear stress distributions on the tire-soil interface. Results obtained from numerical simulations of the tractive performance of tires at different slips on sand are also presented and compared with available experimental data.  相似文献   

4.
The effect of initial fabric anisotropy produced by sample preparation on the shear behavior of granular soil is investigated by performing discrete element method (DEM) simulations of fourteen biaxial tests in drained conditions. Numerical test specimens are prepared by three means: gravitational deposition, multi-layer compression, and isotropic compression, such that different initial inherent soil fabrics are created. The DEM simulation results show that initial fabric anisotropy exerts a considerable effect on the shear behavior of granular soil, and that the peak stress ratio and peak dilatancy increase with an increase in the fabric index an that is estimated from the contact orientations. The stress–dilatancy relationship is found to be independent of the initial fabric anisotropy. The anisotropy related to the contact orientation and contact normal force accounts for the main contribution to the mobilized friction angle. Also, the occurrence of contractive shear response in an initial shearing stage is accompanied by the most intense particle rearrangement and microstructural reorganization, regardless of the sample preparation method. Furthermore, the uniqueness of the critical state line in e–log p′ and q–p′ plots is observed, suggesting that the influence of initial fabric anisotropy is erased at large shear strains.  相似文献   

5.
ROTATIONAL RESISTANCE AND SHEAR-INDUCED ANISOTROPY IN GRANULAR MEDIA   总被引:1,自引:0,他引:1  
This paper presents a micromechanical study on the behavior of granular materials under confined shear using a three-dimensional Discrete Element Method (DEM). We consider rotational resistance among spherical particles in the DEM code as an approximate way to account for the effect of particle shape. Under undrained shear, it is found rotational resistance may help to increase the shear strength of a granular system and to enhance its resistance to liquefaction. The evolution of internal structure and anisotropy in granular systems with different initial conditions depict a clear bimodal character which distinguishes two contact subnetworks. In the presence of rotational resistance, a good correlation is found between an analytical stress-force-fabric relation and the DEM results, in which the normal force anisotropy plays a dominant role. The unique properties of critical state and liquefaction state in relation to granular anisotropy are also explored and discussed.  相似文献   

6.
7.
《Comptes Rendus Mecanique》2017,345(12):868-889
Due to increasing global energy demands, research is being conducted on the mechanical properties of methane hydrate-bearing soils (MHBSs), from which methane hydrate (MH) will be explored. This paper presents a numerical approach to study the mechanical properties of MHBSs. The relationship between the level of MH saturation and the interparticle bond thickness is first obtained by analyzing the scanning electron microscope images of MHBS samples, in which is the bridge connecting the micromechanical behavior captured by the DEM with the macroscopic properties of MHBSs. A simplified thermal-hydromechanical (THM) bond model that considers the different bond thicknesses is then proposed to describe the contact behavior between the soil particles and those incorporated into the discrete element method (DEM). Finally, a series of biaxial compression tests are carried out with different MH saturations under different effective confining pressures to analyze the mechanical properties of deep-sea MHBSs. The results of the DEM numerical simulation are also compared with the findings from triaxial compression tests. The results show that the macromechanical properties of deep-sea MHBSs can be qualitatively captured by the proposed DEM. The shear strength, cohesion, and volumetric contraction of deep-sea MHBSs increase with increasing MH saturation, although its influence on the internal friction angle is obscure. The shear strength and volumetric contraction increase with increasing effective confining pressure. The peak shear strength and the dilation of MHBSs increase as the critical bond thickness increases, while the residual deviator stress largely remains the same at a larger axial strain. With increasing the axial strain, the percentage of broken bonds increases, along with the expansion of the shear band.  相似文献   

8.
This paper shows that for DEM simulations of triaxial tests using samples with a grading that is repre- sentative of a real soil, the sample size significantly influences the observed material response. Four DEM samples with identical initial states were produced: three cylindrical samples bounded by rigid wails and one bounded by a cubical periodic cell, When subjected to triaxial loading, the samples with rigid boundaries were more dilative, stiffer and reached a higher peak stress ratio than the sample enclosed by periodic boundaries. For the rigid-wall samples, dilatancy increased and stiffness decreased with increasing sample size, The periodic sample was effectively homogeneous, The void ratio increased and the contact density decreased close to the rigid walls, This heterogeneity reduced with increasing sample size. The positions of the critical state lines (CSLs) of the overall response in e-log p' space were sensitive to the sample size, although no difference was observed between their slopes. The critical states of the interior regions of the rigid-wall-bounded samples approached that of the homogeneous periodic sample with increasing sample size. The ultimate strength of the material at the critical state is independent of sample size.  相似文献   

9.
高盼  陈波  胡云世  苇广 《实验力学》2017,(3):423-430
为分析制样含水量对重塑软黏土的力学特性影响,用单向固结仪和三轴仪分别对不同泥浆含水量固结而成的重塑样开展了单向压缩试验和固结不排水剪切三轴试验。试验结果表明,重塑样的初始孔隙比随制样含水量的增大而增大,从而引起压缩曲线的上移以及压缩指数的增大,土体的抗剪强度减小,孔隙水压力增大;但初始含水量对土体的有效应力比和临界状态影响不大;制样含水量对重塑样力学特性的影响的界限含水量约为2.0倍液限含水量。最后,用孔隙指数对试验结果归一化,得到不同初始孔隙比重塑样的压缩曲线和剪切强度可基本归一化为土的固有压缩曲线和固有强度曲线。  相似文献   

10.
对四川地区江河上数座水电站坝基砂层的26组动力三轴试验资料进行了统计分析,基于动剪应力比法的液化判别方法推导了的地震液化的极限状态方程,使用蒙特卡洛随机抽样的方法计算了砂层液化的失效概率,并对某水电站的厂房地基砂层的液化可靠度进行了计算分析。研究表明,统计按粉砂样总体和中细砂样总体划分较为合理;砂层的动剪应力比可采用正态分布;电站砂层地基地震液化的最危险工况为,闸坝盖重加稳定的向上渗流及遭遇Ⅶ度地震荷载,为高液化风险,其液化概率随埋深加大而增大,最危险部位为砂层底板,对坝基砂层应进行抗液化处理。  相似文献   

11.
Recently, the authors have focused on the shear behavior of interface between granular soil body and very rough surface of moving bounding structure. For this purpose, they have used finite element method and a micro-polar elasto-plastic continuum model. They have shown that the boundary conditions assumed along the interface have strong influences on the soil behavior. While in the previous studies, only very rough bounding interfaces have been taken into account, the present investigation focuses on the rough, medium rough and relatively smooth interfaces. In this regard, plane monotonic shearing of an infinite extended narrow granular soil layer is simulated under constant vertical pressure and free dilatancy. The soil layer is located between two parallel rigid boundaries of different surface roughness values. Particular attention is paid to the effect of surface roughness of top and bottom boundaries on the shear behavior of granular soil layer. It is shown that the interaction between roughness of bounding structure surface and the rotation resistance of bounding grains can be modeled in a reasonable manner through considered Cosserat boundary conditions. The influence of surface roughness is investigated on the soil shear strength mobilized along the interface as well as on the location and evolution of shear localization formed within the layer. The obtained numerical results have been qualitatively compared with experimental observations as well as DEM simulations, and acceptable agreement is shown.  相似文献   

12.
The generalized elastoplastic constitutive equation for soils is proposed based on the subloading surface model extended so as to describe the dependence of both the magnitude and the direction of inelastic stretching on the stress rate tangential to the subloading surface [Int J Plasticity 17 (2001) 117]. It would be applicable to the analysis of deformation of soils in both normal-yield and subyield states for not only lower but also higher stress ratio than that in the critical state. Then, the shear band formation in the rectangular specimen subjected to the biaxial compression under the undrained plane strain condition is analyzed by the generalized equation, and thus the condition for shear band formation and the shear band inclination are discussed in relation to material properties and the state of stress, i.e. the stress-ratio and the normal-yield ratio. These results reveal that the tangential stretching term makes easy to fulfill the necessary condition of shear band formation for not only normal-yield but also subyield states, and further the formation is affected by the material parameter prescribing the approaching degree of the stress to the normal-yield state.  相似文献   

13.
本文采用宏观试验和细观模拟相结合的方法研究胶结砂砾石层面在剪切过程中的破坏行为.首先进行了不同法向应力作用下的胶结砂砾石层面直剪试验,获得了不同的剪切面破坏特征:随着法向应力的不断增加,剪切破坏面凹凸起伏程度、骨料脱落现象越发明显.其次为了深入探究层面破坏现象,按照室内试验采用的骨料级配粒径建立细观颗粒数值模型,结合物理试验对模型进行参数标定,并进行数值模型的层面直剪模拟和细观分析.结果表明,数值模型可以再现宏观直剪试验层面破坏特征;法向应力越大,层面区域颗粒发生错动和翻转的数量越多;层面破坏方式为颗粒间的张拉和剪切混合破坏,裂隙均集中在层面位置,随着法向应力的增加,裂隙的集中区域逐渐由“面”向“带”转变.  相似文献   

14.
The behavior of soil-structure interface can be crucial to the overall response of a soil-structure system. The numerical simulation of soil-structure interaction problem requires proper modeling of the interface. The similarity between the behavior of soil and interface is first analyzed in the present paper. With this similarity, the concept of critical state soil mechanics (CSSM), which has been successfully used in the modeling of soil behavior, is used to develop a constitutive model for soil-structure interface in the framework of generalized plasticity. The model is capable of modeling strain hardening, softening, normal dilatancy and stress-path dependency of interface between sandy soil and structures during shearing. The effects of normal pressure as well as density of sand are captured in the model. The performance of the model is verified with various experimental results. The unified modeling of the behavior of interfaces with different roughness, different density of soil and different normal pressures using the concept of CSSM is also successfully attempted.  相似文献   

15.
现有研究大多采用简单的摩尔库伦模型针对土的空间变异性对边坡或基础的安全系数或失效概率做计算分析.事实上临界状态本构模型,如SIMSAND,能更准确地反映土的应力-应变关系.为此,本文采用SIM-SAND模型,针对砂土初始孔隙比的空间变异性对其力学特性及破坏模式的影响做详细分析,算例采用简单的室内平面应变双轴试验,分为松砂排水、密砂排水、松砂不排水和密砂不排水四种情况.每一种情况均采用蒙特卡罗方法进行初始孔隙比的随机分布生成,并做大量计算,以此来分析初始孔隙比的不均匀性对剪切带生成和破坏模式和竖向承载力发展及其概率密度分布的影响.  相似文献   

16.
The effect of a nonuniform distribution of porosity on flow localization and failure in a porous material is analyzed numerically. The void density distribution and properties used to characterize the material behavior were obtained from measurements on partially consolidated and sintered iron powder. The calculations were carried out using an elastic viscoplastic constitutive relation for porous plastic solids. Local material failure is incorporated into the model through the dependence of the flow potential on void volume fraction. The region modelled is a small portion of a larger body, subject to various triaxial stress conditions. Both plane strain and axisymmetric deformations are considered with imposed periodic boundary conditions. Interactions between regions with higher void fractions promote plastic flow localization into a band. Local failure occurs by void growth and coalescence within the band. The results suggest a failure criterion based on a critical void volume fraction that is only weakly dependent on stress history. The critical void fraction does. however, depend on the initial void distribution and material hardening characteristics.  相似文献   

17.
This article discusses localized bifurcation modes corresponding to shear band formation and diffuse bifurcation modes corresponding to bulge formation for cylindrical soil specimen subjected to an axisymmetric load under undrained conditions. We employ the tangential-subloading surface model, which exhibits the characteristic regimes of the governing equations: elliptic, hyperbolic and parabolic. Also, conditions for shear band formation, shear band inclination, diffuse bulging formation, and the long and short wavelength limits of diffuse bulging modes are discussed in relation to material properties and their state of stress, i.e. the stress ratio and the normal-yield ratio. Tangential-plastic strain rate term is required for the analyses of shear band and diffuse bulging. The shear band and the diffuse bulging are generated in not only normal-yield but also subyield states and they are severely affected by the normal-yield ratio describing the degree of approach to the normal-yield state.  相似文献   

18.
The plastic relaxation of a shear crack situated normal to the interface of a second phase particle of circular cross-section is quantitatively analyzed. The ratio of applied stress to yield stress and the relative displacement of the crack faces at the tips of the crack in the matrix and the interface in the second phase are related to the crack parameters namely the length of the crack, the width of the plastic zone in the matrix and the second phase. The effect of the shear modulus and size of the second phase particle on the behaviour of the plastic zones is determined. A critical value of the relative displacement of the crack faces at the tip of the crack is used as the criterion to determine the tendency to brittle crack extension into the matrix and the second phase.  相似文献   

19.
小腿残肢与接受腔界面的摩擦行为分析及测试   总被引:1,自引:1,他引:0  
孔亮  贾振岗  石磊  李炜 《摩擦学学报》2014,34(6):650-657
利用断层扫描数据,图像处理和反求技术建立了骨骼、软组织以及假肢接受腔的三维有限元模型,分别施加Heel Strike、Foot Flat、Mid-Stance、Heel Off和Toe Off五个典型步态时相的载荷,计算残肢皮肤在一个步态周期内的应力、滑移量变化,确定最大临界参数;借助UMT-II多功能摩擦磨损试验机模拟残肢皮肤和接受腔摩擦界面,研究皮肤在步态周期临界参数下的摩擦行为变化.有限元结果表明:一个步态周期内五个典型时相,软组织表面最大正应力和剪切力均发生在髌韧带处,在Heel off步态时相,最大临界正应力为384.3 k Pa,剪应力为102.1 k Pa;随着正压力的减小,摩擦力减小,摩擦系数增大;当正应力下降到39.5 k Pa临界值时,接触面发生相对滑动,摩擦系数达到最大值.摩擦学试验结果表明:法向载荷分别为17 N和7 N时,残肢皮肤均处于黏着状态;皮肤弹性变形越大,黏着程度越大.  相似文献   

20.
香港全风化花岗岩饱和直剪试验中的剪胀问题   总被引:1,自引:0,他引:1  
通过对全风化花岗岩的慢剪试验,指出了在直剪试验中出现的两种垂直位移变化形式,其对土体的剪胀剪缩性质的 反映与三轴试验是一致的。剪胀的发生与土体的密实程度密切相关;随垂直压力的增大,剪胀发生所需剪应力也增大;剪应 力达到峰值所需要剪位移总是比剪胀发生时所需的剪位移大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号