首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, experiments on fly ash conveying were carried out with a home-made long-distance positive-pressure pneumatic conveying system equipped with a high performance electrical capacitance tomography system to observe the transient characteristics of gas–solid two-phase flow. The experimental results indicated that solids throughput increased with increasing solids–gas ratio when the conveying pipeline was not plugged. Moreover, the optimum operating state was determined for the 1000 m long conveying pipeline with a throttle plate of 26 orifices. At this state the solids throughput was about 12.97 t/h. Additionally, the transportation pattern of fly ash gradually changed from sparse–dense flow to partial and plug flows with increasing conveying distance because of the conveying pressure loss. These experimental results provide important reference data for the development of pneumatic conveying technology.  相似文献   

2.
Flow characterization of high-pressure dense-phase pneumatic conveying of coal powder is not fully understood. To further reveal the dynamic behavior of coal particles in dense-phase pneumatic conveying pipelines, a method for the scale decomposition of particle motion based on empirical mode decomposition and Hurst analysis of experimental electrostatic signals is reported. This allows the multi-scale motion characteristics of single coal particles and particle clusters to be determined. Micro-, meso-, and macro-scale subsets were reconstructed, which reflected the different behaviors of the coal particles: specifically, dynamic features of the micro-scale subset represented features of single particle collisions and frictional interactions; dual fractal characteristics of the meso-scale subset described the motion of coal particle clusters; and features of the macro-scale subset reflected persistent dynamic behavior of the entire pneumatic conveying system. Motion behavior of single particles and particle clusters could be respectively investigated by considering the relative energies of the micro- and meso-scale contributions to the electrostatic signal. This was verified both by theoretical analysis and experiment.  相似文献   

3.
Current models for pressure drop prediction of slug flow pneumatic conveying in a horizontal pipeline system assume some type of steady state conditions for prediction,which limits their capability for increased predictive accuracy relative to experimental data.This is partly because of the nature of slug flow pneumatic conveying system,which,as a dynamic system,never becomes stable.By utilising conservation of mass (airflow),a dynamic pressure analysis model is proposed on the basis of the derivative of the upstream pressure behaviour.The rate of air permeation through slug,one of the important factors in the conservation model,is expressed as a function of a slug permeability factor.Other factors such as slug velocity,slug length and the fraction of stationary layer were also considered.Several test materials were conveyed in single-slug tests to verify the proposed pressure drop model,showing good agreement between the model and experimental results.  相似文献   

4.
Current models for pressure drop prediction of slug flow pneumatic conveying in a horizontal pipeline system assume some type of steady state conditions for prediction, which limits their capability for increased predictive accuracy relative to experimental data. This is partly because of the nature of slug flow pneumatic conveying system, which, as a dynamic system, never becomes stable. By utilising conservation of mass (airflow), a dynamic pressure analysis model is proposed on the basis of the derivative of the upstream pressure behaviour. The rate of air permeation through slug, one of the important factors in the conservation model, is expressed as a function of a slug permeability factor. Other factors such as slug velocity, slug length and the fraction of stationary layer were also considered. Several test materials were conveyed in single-slug tests to verify the proposed pressure drop model, showing good agreement between the model and experimental results.  相似文献   

5.
栓状流密相气力输送   总被引:5,自引:0,他引:5  
范椿 《力学进展》2002,32(4):599-612
首先介绍了气力输送的实验设备.评述了水平栓流气力输送的压力降计算方法,用3种不同的方法计算了压力降并与实验数据进行比较.此外评述了用特征线方法进行水平管的数值模拟,倾斜管的压力降计算和长距离的栓流气力输送.最后展望了该领域的发展方向.   相似文献   

6.
In this study,experiments on fly ash conveying were carried out with a home-made long-distance positive-pressure pneumatic conveying system equipped with a high performance electrical capacitance tomography system to observe the transient characteristics of gas-solid two-phase flow.The experimental results indicated that sol ids throughput increased with increasing solids-gas ratio when the conveying pipeline was not plugged.Moreover,the optimum operating state was determined for the 1000 m long conveying pipeline with a throttle plate of 26 orifices.At this state the solids throughput was about 12.97 t/h.Additionally,the transportation pattern of fly ash gradually changed from sparse-dense flow to partial and plug flows with increasing conveying distance because of the conveying pressure loss.These experimental results provide important reference data for the development of pneumatic conveying technology.  相似文献   

7.
During the pneumatic conveying, pulverized coal with different moisture contents may develop substantial difference in flow characteristics, whose cause is not fully understood. This study focused on influence of moisture content on conveying characteristics in an experimental test facility with the conveying pressure up to 4 MPa. The experiments included soft coal and lignite with similar density and particle size. With the increase in moisture content, the mass flow rate decreased for lignite (3.24% < M < 8.18%) but increased at first and then decreased for soft coal (0.4% < M < 6.18%) at same operating parameters. The flowability of soft coal was worse than that of lignite at similar operating parameters and external moisture content. The extremal conveying moisture contents of two coal types were obtained. The particle charge and surface moisture content were investigated to indicate influence mechanism of moisture content on mass flow rate in pneumatic conveying at high pressure. Pressure drop of soft coal was greater than that of lignite for same test section. The conveying phase diagram of dense-phase pulverized coal at high pressure was obtained and the pressure drops through different test sections were compared and analyzed. The bend loss factor rose with the increase in moisture content and was independent of conveying velocity and solid-gas ratio in dense-phase pneumatic conveying at high pressure.  相似文献   

8.
Processes involving biomass are of growing interest, but handling and conveying biomass particles are challenging due to the unusual physical properties of biomass particles. This paper reviews recent work on pneumatic conveying of biomass particles, especially agricultural particles and pulp fibres. Experimental work has been mainly carried out to determine a range of parameters, such as pressure drop, particle velocity, flow regime and electrostatic charging for both horizontal and vertical conveying. Models ranging from empirical to CFD models are also being developed. Difficulties in representing turbulence and interactions among biomass particles and between the particles and fluid have so far limited the success of advanced modeling. Further work is needed to improve understanding of multiphase biomass pneumatic conveying and to assist in the development of biomass energy and conversion processes.  相似文献   

9.
Processes involving biomass are of growing interest, but handling and conveying biomass particles are challenging due to the unusual physical properties of biomass particles. This paper reviews recent work on pneumatic conveying of biomass particles, especially agricultural particles and pulp fibres. Experimental work has been mainly carried out to determine a range of parameters, such as pressure drop, particle velocity, flow regime and electrostatic charging for both horizontal and vertical conveying. Models ranging from empirical to CFD models are also being developed. Difficulties in representing turbulence and interactions among biomass particles and between the particles and fluid have so far limited the success of advanced modeling. Further work is needed to improve understanding of multiphase biomass pneumatic conveying and to assist in the development of biomass energy and conversion processes.  相似文献   

10.
In the pneumatic conveying process, particles move to the bend under the influence of inertia to form a particle rope, which will cause serious wear between the particles and the pipe wall, and then the dune model is designed and installed in the 90° bend to reduce energy consumption and wear in this study. Firstly, the minimum pressure drop velocity of particles transported by different size dune models was obtained through experimental study. Then the energy saving mechanism of the dune model is studied by CFD-DEM coupling. The experimental results show that the installation of the dune model reduces the minimum pressure drop velocity. The numerical simulation results show that the number of collisions between the particles and the tube wall in the vertical tube decreases after the installation of the dune model, which reduces the energy loss. Moreover, the increasing of tail size of the dune model is beneficial to the diffusion and acceleration of the particles in the vertical tube.  相似文献   

11.
Current modelling techniques for the prediction of conveying line pressure drop in low velocity dense phase pneumatic conveying are largely based on steady state analyses.Work in this area has been on-going for many years with only marginal improvements in the accuracy of prediction being achieved.Experimental and theoretical investigations undertaken by the authors suggest that the flow mechanisms involved in dense phase conveying are dominated by transient effects rather than those of steady state and are possibly the principal reasons for the limited improvement in accuracy.This paper reports on investigations on the pressure fluctuation behaviour in dense phase pneumatic conveying of powders.The pressure behaviour of the gas flow in the top section of the pipeline was found to exhibit pulsatile oscillations.In particular,the pulse velocity showed variation in magnitude while the frequency of the oscillations rarely exceeded 5 Hz.A wavelet analysis using the Daubechie 4 wavelet found that the amplitude of the oscillations increased along the pipeline.Furthermore,there was significant variation in gas pulse amplitude for different types of particulate material.  相似文献   

12.
Experiments of dense-phase pneumatic conveying of pulverized coal using nitrogen were carried out in a test facility at pressures of up to 3.7 MPa to study the effects of coal type, particle size and moisture content on flow characteristics. The Jenike shear test and scanning electron microscopy (SEM) were employed to provide a better understanding of effects of the material properties on flow characteristics. Two kinds of pulverized coals, Yanzhou and Datong, with similar particle size, moisture content and density, were used in the test. Pressure drop increases with increasing the particle size at similar solid–gas ratio, superficial velocity and pressure in the receiving hopper, and pressure drops through different test sections decrease firstly and then rise with increasing the conveying velocity for the same particle size, mass flow rate and pressure in the receiving hopper. The flowability of pulverized coal decreases with increasing the moisture content in the range from 3.24% to 8.18%. Unconfined yield strength (UYS) increases and flow function (FF) decreases with increasing the moisture content. Results of the shearing tests are consistent with the results of the conveying study. Pressure drops through different test sections are discussed and analyzed.  相似文献   

13.
Current modelling techniques for the prediction of conveying line pressure drop in low velocity dense phase pneumatic conveying are largely based on steady state analyses. Work in this area has been on-going for many years with only marginal improvements in the accuracy of prediction being achieved. Experimental and theoretical investigations undertaken by the authors suggest that the flow mechanisms involved in dense phase conveying are dominated by transient effects rather than those of steady state and are possibly the principal reasons for the limited improvement in accuracy. This paper reports on investigations on the pressure fluctuation behaviour in dense phase pneumatic conveying of powders. The pressure behaviour of the gas flow in the top section of the pipeline was found to exhibit pulsatile oscillations. In particular, the pulse velocity showed variation in magnitude while the frequency of the oscillations rarely exceeded 5 Hz. A wavelet analysis using the Daubechie 4 wavelet found that the amplitude of the oscillations increased along the pipeline. Furthermore, there was significant variation in gas pulse amplitude for different types of particulate material.  相似文献   

14.
This paper presents the results of an ongoing investigation into the fluctuations of pressure signals due to solids–gas flows for dense-phase pneumatic conveying of fine powders. Pressure signals were obtained from pressure transducers installed along different locations of a pipeline for the fluidized dense-phase pneumatic conveying of fly ash (median particle diameter 30 μm; particle density 2300 kg/m3; loose-poured bulk density 700 kg/m3) and white powder (median particle diameter 55 μm; particle density 1600 kg/m3; loose-poured bulk density 620 kg/m3) from dilute to fluidized dense-phase. Standard deviation and Shannon entropy were employed to investigate the pressure signal fluctuations. It was found that there is an increase in the values of Shannon entropy and standard deviation for both of the products along the flow direction through the straight pipe sections. However, both the Shannon entropy and standard deviation values tend to decrease after the flow through bend(s). This result could be attributed to the deceleration of particles while flowing through the bends, resulting in dampened particle fluctuation and turbulence. Lower values of Shannon entropy in the early parts of the pipeline could be due to the non-suspension nature of flow (dense-phase), i.e., there is a higher probability that the particles are concentrated toward the bottom of pipe, compared with dilute-phase or suspension flow (high velocity), where the particles could be expected to be distributed homogenously throughout the pipe bore (as the flow is in suspension). Changes in straight-pipe pneumatic conveying characteristics along the flow direction also indicate a change in the flow regime along the flow.  相似文献   

15.
以空气作为输送动力、粉煤灰及玻璃微珠作为输送物料,对气力输送管道中气固两相流的流动特性进行了系统的试验研究.对管路系统的特性、操作条件、物料和气体的性质等影响气固两相流压力损失的主要因素进行了探讨.并在实验的基础上对两相流动的沉积速度、经济速度进行了确定.同时在对粉体受力分析的基础上建立了分层流动的物理及数学模型,通过对比数学模型计算值与试验值得出该数学模型具有一定的计算精度,能够用于指导分层流动的研究及应用.  相似文献   

16.
During gas–solid mixture conveying in a dense phase, material is conveyed in dunes on the bottom of the pipeline, or as a pulsating moving bed. This phenomenon increases the pressure drop and power consumption. We introduce a new technique to reduce the pressure drop, which is termed the perforated double tube. To validate this new model, the gas–solid flow pattern and pressure drop were studied numerically and experimentally. The power consumption was also studied experimentally. Numerical studies were performed by the Eulerian–Lagrangian approach to predict gas and particle movement in the pipeline. Comparisons between the numerical predictions and the experimental results for the gas–solid flow patterns and pressure drop show good agreement.  相似文献   

17.
To deeply knowledge of the flow behaviors of pulverized coal particles in dense gas–solid two-phase flow, a multi-scale analysis method based on electrostatic sensor array is applied for the multi-scale characterization of flow behaviors of dense gas–solid flow. The experimental results indicate that: for steady flow, with the increment of conveying pressure difference, the individual particles increase and the particle clusters decrease, the individual particle distribution is always inhomogeneous but the particle cluster distribution tends to be more homogeneous over the cross-section of pipe, while the average flow behavior of pulverized coal particles is always in the relatively static state. For unsteady flow, the average flow behavior of pulverized coal particles is dynamic, and the flow behaviors of the multi-scale flow structures over the cross-section of pipe are all significantly inhomogeneous. Moreover, the effect of particle size on flow behavior of pulverized coal is also investigated and validated.  相似文献   

18.
陈彬  刘阁 《计算力学学报》2017,34(6):785-792
油液在运行过程中不可避免地会产生颗粒物,影响油液的正常使用,甚至出现设备故障,因而分析含悬浮颗粒油液的动态特征,掌握在不同压力变化条件下油液及颗粒物的变化规律具有重要意义。利用两相流体理论建立了含悬浮颗粒油液的悬浮流动力学模型,通过特征线法进行了数值求解,将数值结果与实验数据比较,具有较好的一致性;根据所建模型,分析了不同系统压力条件下悬浮流中各相的脉动规律。结果表明,流场中各相参数的脉动幅值随着系统压力的增加而增大;管路始端和终端各相参数的脉动时刻分别位于1/4脉动周期(T)的奇数倍和偶数倍处,管路中段各相参数的脉动时刻则位于T/8的奇数倍处;悬浮颗粒速度会受到油液速度拖曳力作用,其变化趋势与油液速度基本一致,颗粒浓度分布与油液压力的变化趋势完全相反。  相似文献   

19.
 The motion of small particles, such as those typically used as seeding particles for tracer particle flow velocity measurement techniques, is studied numerically for a flow region with a large spatial velocity gradient. The influence of the Basset history integral on the statistics of results of particle motion calculations which are based on multi-disperse particle size distributions is investigated. The biasing of the measured velocity data, with regard to the actual flow velocity, which results as a consequence of such particle size distributions is discussed. It is found that the net effect of the Basset integral on the calculations is indeed to reduce the maximum RMS deviation associated with the multi-disperse distribution and that the relative reduction increases with a decreasing particle density. The main result of this study is, thus, that it is desirable to use light tracer particles not only because they more readily adjust to a changed flow velocity but in particular also because they tend to contribute less to the overall RMS deviation of velocity data sampled in a region with a large spatial gradient of the flow velocity. Received: 9 August 1996/Accepted: 25 January 1997  相似文献   

20.
The gas/solid flow regime of dense-phase pneumatic conveying of pulverized coal under a pressure of 4.0 MPa in horizontal pipeline 10 mm in diameter, is monitored by electrical capacitance tomography (ECT) using 8 electrodes. To improve the accuracy of the capacitance measurement, an AC-based single-channel capacitance measuring circuit was developed, and a modified iterative Landweber algorithm was used to reconstruct the image. A two-fluid model based on the kinetic theory of granular flow was used to study the three-dimensional steady-state flow behavior of dense-phase pneumatic conveying of pulverized coal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号