首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Physical Communication》2008,1(3):183-193
Motivated by the desire for efficient spectral utilization, we present a novel algorithm based on binary power allocation for sum rate maximization in Cognitive Radio Networks (CRN). At the core lies the idea of combining multi-user diversity gains with spectral sharing techniques and consequently maximizing the secondary user sum rate while maintaining a guaranteed quality of service (QoS) to the primary system. We consider a cognitive radio network consisting of multiple secondary transmitters and receivers communicating simultaneously in the presence of the primary system. Our analysis treats both uplink and downlink scenarios. We first present a distributed power allocation algorithm that attempts to maximize the throughput of the CRN. The algorithm is simple to implement, since a secondary user can decide to either transmit data or stay silent over the channel coherence time depending on a specified threshold, without affecting the primary users’ QoS. We then address the problem of user selection strategy in the context of CRN. Both centralized and distributed solutions are presented. Simulation results carried out based on a realistic network setting show promising results.  相似文献   

2.
We consider a multiple access MAC fading channel with two users communicating with a common destination, where each user mutually acts as a relay for the other one as well as wishes to transmit its own information as opposed to having dedicated relays. We wish to evaluate the usefulness of relaying from the point of view of the system’s throughput (sum rate) rather than from the sole point of view of the user benefiting from the cooperation as is typically done. We do this by allowing a trade-off between relaying and fresh data transmission through a resource allocation framework. Specifically, We propose a cooperative transmission scheme allowing each user to allocate a certain amount of power for its own transmitted data while the rest is devoted to relaying. The underlying protocol is based on a modification of the so-called non-orthogonal amplify-and-forward (NAF) protocol Azarian et al. [18]. We develop capacity expressions for our scheme and derive the rate-optimum power allocation, in closed form for centralized and distributed frameworks. In the distributed scenario, partially statistical and partially instantaneous channel information is exploited.The centralized power allocation algorithm indicates that even in a mutual cooperation setting like ours, on any given realization of the channel, cooperation is never truly mutual, i.e. one of the users will always allocate zero power to relaying the data of the other one, and thus act selfishly. But in a distributed framework, our results indicate that the sum rate is maximized when both mobiles act selfishly.  相似文献   

3.
In this paper, we introduce a novel approach for power allocation in cellular networks. In our model, we use sigmoidal-like utility functions to represent different users’ modulation schemes. Each utility function is a representation of the probability of successfully transmitted packets per unit of power consumed by a user, when using a certain modulation scheme. We consider power allocation with utility proportional fairness policy, where the fairness among users is in utility percentage i.e. percentage of successfully transmitted packets of the corresponding modulation scheme. We formulate our power allocation optimization problem as a product of utilities of all users and prove that it is convex and therefore the optimal solution is tractable. We present a distributed algorithm to allocate base station powers optimally with priority given to users running lower modulation schemes while ensuring non-zero power allocation to users running higher modulation schemes. Our algorithm prevents fluctuation in the power allocation process and is capable of traffic and modulation dependent pricing policy. This can be used to flatten traffic and decrease the service price for users. We also compare our results with a benchmark algorithm and show that our algorithm performs better in allocating powers fairly to all users without dropping any user in order to maximize performance.  相似文献   

4.
We consider a cognitive radio network in a multi-channel licensed environment. Secondary user transmits in a channel if the channel is sensed to be vacant. This results in a tradeoff between sensing time and transmission time. When secondary users are energy constrained, energy available for transmission is less if more energy is used in sensing. This gives rise to an energy tradeoff. For multiple primary channels, secondary users must decide appropriate sensing time and transmission power in each channel to maximize average aggregate-bit throughput in each frame duration while ensuring quality-of-service of primary users. Considering time and energy as limited resources, we formulate this problem as a resource allocation problem. Initially a single secondary user scenario is considered and solution is obtained using decomposition and alternating optimization techniques. Later we extend the analysis for the case of multiple secondary users. Simulation results are presented to study effect of channel occupancy, fading and energy availability on performance of proposed method.  相似文献   

5.
杨小龙  谭学治  关凯 《物理学报》2015,64(10):108403-108403
针对认知无线电网络中认知用户广义传输时间的优化问题, 提出了一种基于抢占式续传优先权M/G/m排队理论的频谱切换模型. 在该排队模型中, 为了最小化认知用户广义传输时间, 采用混合排队-并列式服务的排队方式. 在此基础上, 深入分析多个认知用户、多个授权信道、多次频谱切换条件下认知用户信道使用情况, 从而推导出广义传输时间表达式. 最后探讨了该模型下自适应频谱切换策略. 仿真结果表明, 相比于已有的频谱切换模型, 该模型不仅能够更加完整地描述认知用户频谱切换行为, 而且使得认知用户传输时延更小, 广义传输时间更短. 此外, 认知无线电网络允许的认知用户服务强度增加, 能够容纳的认知用户数量增多. 因此, 该模型提升了认知用户频谱切换的性能, 更好地实现了认知用户与授权用户的频谱共享.  相似文献   

6.
In this paper, the resource allocation strategy is investigated for a spectrum sharing two-tier femtocell networks, in which a central macrocell is underlaid with distributed femtocells. The spectral radius is introduced to address the conditions that any feasible set of users’ signal-to-interference-plus-noise ratio requirements should satisfy in femtocell networks. To develop power allocation scheme with the derived conditions, a Stackelberg game is formulated, which aims at the utility maximization both of the macrocell user and femtocell users. The distributed power control algorithm is given to reduce the cross-tier interference between the macrocell and femtocell with same channel. At last, admission control algorithm is proposed, aiming to exploit the network resource effectively. Numerical results show that the proposed resource allocation schemes are effective in reducing power consumption and more suitable in the densely deployed scenario of the femtocell networks. Meanwhile, it also presents that the distributed power allocation scheme combined with admission control can protect the performance of all active femtocell users in a robust manner.  相似文献   

7.
We consider the problem of interference management and resource allocation in a cognitive radio network (CRNs) where the licensed spectrum holders (primary users) share their spare capacity with the non-licensed spectrum holders (secondary users). Under such shared spectrum usage the transmissions of the secondary users should have a minimal impact on the quality of service (QoS) and the operating conditions of the primary users. Therefore, it is important to distinguish the two types of users, and formulate the problem of resource allocation considering hard restrictions on the user-perceived QoS (such as packet end-to-end delay and loss) and physical-layer channel characteristics (such as noise and interference) of the primary users. To achieve this goal, we propose to assign the bandwidth and transmission power to minimize the total buffer occupancy in the system subject to capacity constraints, queue stability constraints, and interference requirements of the primary users. We apply this approach for resource allocation in a CRN built upon a Third Generation Partnership Project (3GPP) long-term evolution (LTE) standard platform. Performance of the algorithm is evaluated using simulations in OPNET environment. The algorithm shows consistent performance improvement when compared with other relevant resource allocation techniques.  相似文献   

8.
In this paper, we study the cooperative communication of a cognitive underlay network by utilizing the diversity of multiple spectrum bands. In particular, we assume that the transmission power of the secondary user (SU) is subject to different joint constraints, such as peak interference power of the multiple primary users (PUs), peak transmission power of the SU, outage tolerate interference, and outage probability threshold. Accordingly, two power allocation schemes are considered on the basis of the minimum interference channel from the SU to the PU and the channel state information of the primary user link. Furthermore, the SU can select one of the three transmission modes following the channel state conditions, namely as cellular, device-to-device, or switching mode, to transmit the signal to the secondary user receiver. Given this setting, two power allocation schemes over a spectrum band selection strategy are derived. In addition, closed-form expressions for the outage probability of three modes are also obtained to evaluate the performance of the secondary network. Most importantly, a closed-form expression for the peak interference power level of the PU, which is considered as one of the most important parameters to control the SU’s transmission power, is derived by investigating the relation of two considered power allocation schemes in the practise. Finally, numerical examples show that the outage performance of secondary network in the switching mode outperforms the one of the cellular and device-to-device (D2D) mode for all considered power allocation schemes.  相似文献   

9.
In this paper, we focus on the secrecy rate maximization problem in intelligent reflecting surface (IRS)-assisted cognitive radio (CR) networks. In order to improve the security, there is a common scheme to add artificial noise (AN) to the transmitted signal, which is also applied in this paper. Further, in CR networks, the secondary users always cannot obtain accurate channel state information (CSI) about the primary user and eavesdropper. By taking jointly design for the IRS phase shift matrix, the transmitted beamforming of the secondary base station (BS), and the covariance matrix of AN, our objective is to maximize the minimal secrecy rate of all secondary users. Due to the serious coupling among the designed variables, it cannot be solved by conventional methods. We propose an alternating optimization (AO) algorithm. In simulation results, we apply primary users and secondary users randomly distributed in the communication area, which numerically demonstrate the superiority of our proposed scheme.  相似文献   

10.
This paper describes a theoretical framework for the design and analysis of power control algorithms for high-throughput wireless networks using ultrawideband (UWB) technologies. The tools of game theory are shown to be expedient for deriving scalable, energy-efficient, distributed power control schemes to be applied to a population of battery-operated user terminals in a rich multipath environment. In particular, the power control issue is modeled as a dynamic noncooperative game in which each user chooses its transmit power so as to maximize its own utility, which is defined as the ratio of throughput to transmit power. Although distributed (noncooperative) control is known to be suboptimal with respect to the optimal centralized (cooperative) solution, it is shown via large-system analysis that the game-theoretic distributed algorithm based on Nash equilibrium exhibits negligible performance degradation with respect to the centralized socially optimal configuration. The framework described here is general enough to also encompass the analysis of code division multiple access (CDMA) systems and to show that UWB slightly outperforms CDMA in terms of achieved utility at the Nash equilibrium.  相似文献   

11.
This paper considers the problem of cooperative spectrum sensing in cognitive radio networks (CRN). Communication in CRNs may be disrupted due to the presence of malicious secondary users (SU) or channel impairments such as shadowing. This paper proposes a spatio-frequency framework that can detect and track malicious users and anomalous measurements in CRNs. The joint problem of spectrum sensing and malicious user identification is posed as an optimization problem that aims to exploit the sparsity inherent to both, spectrum occupancy and malicious user occurrence. Proposed scheme obtains improved performance by utilizing node location information, and can handle missing or inaccurate location information, and noisy SU reports. A distributed block-coordinate descent-based algorithm is proposed that is shown to outperform the state-of-the-art PCA-based approach, and is flexible enough to defeat a variety of attacks encountered in SU networks. An online algorithm, that can handle incorporate multiple SU readings sequentially and adapt to time-varying channels, primary user, and malicious user activity, is also proposed and shown to be consistent. Simulation results demonstrate the efficacy of the proposed algorithms.  相似文献   

12.
Energy efficiency (EE) is an important parameter for the next generation cellular communications which is not limited to voice and text messages only. Device-to-Device (D2D) communication is being viewed as a promising technology to support heterogeneous applications involved in future cellular networks. Due to its short range communication, less amount of power is sufficient to make a successful transmission. By exploiting this feature of D2D, this paper proposes an energy-efficient resource allocation scheme for joint uplink/downlink (UL/DL) D2D considering many-to-one matching criterion for channel reuse among users. In this paper, total EE of D2D pairs (DPs) is taken as a performance metric to be optimized subject to quality of service (QoS) satisfaction for cellular users (CUs) within the power budgets of all the users. An iterative scheme is designed for joint channel and power optimization problem. Simulation results show the convergence of joint iterative algorithm and verify significant performance improvement over other schemes.  相似文献   

13.
Users near cell edges suffer from severe interference in traditional cellular networks. In this paper, we consider the scenario that multiple nearby base stations (BSs) cooperatively serve a group of users which is referred to as the cell free networks. A low complexity optimization method based on the large dimensional analysis is proposed. The advantage of the cell free networks is that the interference caused in the cell edge users can be converted into intended signal. It is not easy to obtain the optimal solution to the network due to coupled relations among the users’ rates. To obtain a suboptimal solution, a precoder that balances signal and interference is adopted to maximize the network capacity. In traditional optimization, it requires instantaneous channel state information. We try to optimize the network sum rate based on the large dimensional analysis. In this way, the optimization can be transformed into another problem that merely depend on the large scale channel statistics. Large dimensional analysis is leveraged to derive the asymptotic signal to interference plus noise ratio that only depends on large scale channel statistics. Based on this result, the power allocation problem does not need to adapt as frequently as the instantaneous channel state information. By this means, signal exchange overhead can be greatly reduced. Numerical results are provided to validate the efficacy of the proposed optimization method.  相似文献   

14.
张茜  刘光斌  余志勇  郭金库 《物理学报》2015,64(1):18404-018404
该文研究了冗余中继, 次用户及中继用户数目, 检测门限, 信道传输错误率等因素对中继协作频谱感知系统性能的影响, 并提出一种新的自适应全局最优化算法.该算法基于获得最大无干扰功率的自适应中继选择方法, 确定备选认知中继集合;单个次用户以信道传输错误率最小为准则, 从备选认知中继集合中自适应选择最佳中继, 使总体检测率最大;在给定目标检测率的条件下, 以系统吞吐量最大为准则, 给出了自适应全局最优化算法.仿真实验结果表明新算法信道传输精度高, 信道吞吐量大, 节约带宽资源.  相似文献   

15.
In the user-centric, cell-free, massive multi-input, multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) system, a large number of deployed access points (APs) serve user equipment (UEs) simultaneously, using the same time–frequency resources, and the system is able to ensure fairness between each user; moreover, it is robust against fading caused by multi-path propagation. Existing studies assume that cell-free, massive MIMO is channel-hardened, the same as centralized massive MIMO, and these studies address power allocation and energy efficiency optimization based on the statistics information of each channel. In cell-free, massive MIMO systems, especially APs with only one antenna, the channel statistics information is not a complete substitute for the instantaneous channel state information (CSI) obtained via channel estimation. In this paper, we propose that energy efficiency is optimized by power allocation with instantaneous CSI in the user-centric, cell-free, massive MIMO-OFDM system, and we consider the effect of CSI exchanging between APs and the central processing unit. In addition, we design different resource block allocation schemes, so that user-centric, cell-free, massive MIMO-OFDM can support enhanced mobile broadband (eMBB) for high-speed communication and massive machine communication (mMTC) for massive device communication. The numerical results verify that the proposed energy efficiency optimization scheme, based on instantaneous CSI, outperforms the one with statistical information in both scenarios.  相似文献   

16.
This work investigates performance of system throughput in intelligent reflecting surfaces (IRSs)-enabled phase cooperative non-orthogonal multiple access (NOMA) framework. By exploiting heterogeneous cognitive radio networks concept the aim is to maximize the sum rate of secondary users in the proposed phase cooperative downlink network configuration via optimization solutions. However, the optimization problem comes out to be NP-hard and precludes direct solution. Hence, an alternating optimization is applied at the primary network to solve the maximization problem by exploiting the transmit beamforming (BF) at the power station (PS) and phase shift optimization at the IRS. Later, sum rate maximization for secondary network is performed by utilizing phase shifts of primary network via phase cooperation. In order to find global optimal solutions for active beamformers at both PSs, a branch-reduce-and-bound (BRnB) method is used whereas, passive phase shift optimization at the primary PS is performed via a simple iterative solution, i.e., the element-wise block coordinate descent method. For the proposed framework, Monte-Carlo simulations are performed where the optimality of the global solution is compared with heuristic BF methods including minimum-mean-square-error/regularized zero-forcing-beamforming (ZFBF) and ZFBF. The BRnB algorithm sets an upper performance bound by improving the sum rate of users in comparison with the conventional heuristic BF schemes. This work signifies the utilization of phase cooperation in IRS-assisted NOMA networks for a multi-user environment.  相似文献   

17.
With the advent of mobile services with asymmetric and symmetric quality of service (QoS) requirements, traditional single link resource allocation techniques have started to show some limitations in handling the complex requirements. To address these issues, joint uplink/downlink resource management approaches were recently introduced where both communications links are jointly considered in the resource management process. One direct consequence of this coupling is a modification of the underlying queueing behavior since the decision making process in one direction in terms of transmission rate now depends on the performance achieved in the opposite direction. In this paper, we present a modeling approach of the decision making process that takes place under the joint uplink/downlink resource management framework. Using decentralized Markov decision processes (DEC-MDP) as a model and gradient ascent methods as an optimization technique, we formulate and solve the joint uplink/downlink decision making process. The uplink and downlink of each user are considered as agents. Assuming certain subcarrier and power allocation schemes, we investigate the resource usage in the uplink and downlink to achieve a certain delay balancing constraint where the total delay in the uplink and downlink is bound by a pre-determined threshold. The approach followed starts by modeling the problem in hand using DEC-MDPs. After discussing the different aspects of the model, the solution using gradient ascent is described. Simulation results illustrate the different dimensions of the problem and their impact on the resource management process.  相似文献   

18.
In this paper, we study the joint user assignment and power allocation for the defined utility function (central cell throughput) maximization in massive Multiple Input-Multiple Output (MIMO) cellular system coexistence with Wireless Fidelity (WiFi) network. Firstly, the power allocation of problem is formulated as a convex optimization. Unfortunately, the formulated problem has not a closed-form solution. For solving the mentioned problem, it is converted to three sub-problem based on the number of lemmas that are expressed. Due to two of these problems remain difficult to solve, this two sub-problem are relaxed. The Ellipsoid algorithm is an iterative algorithm that used for solving of the relaxed problems. In the following, joint user assignment and power allocation will be addressed, in which two approaches are proposed for solving. In the first approach, we propose an iterative algorithm that user assignment problem and power allocation problem are solved in each iteration. In the second approach, at first, users are assigned to licensed and unlicensed bands, then for the obtained arrangement, the power allocation problem is solved. The simulation results showed that the proposed algorithms are significantly close to the benchmark methods.  相似文献   

19.
With the energy consumption of wireless networks increasing, visible light communication (VLC) has been regarded as a promising technology to realize energy conservation. Due to the massive terminals access and increased traffic demand, the implementation of non-orthogonal multiple access (NOMA) technology in VLC networks has become an inevitable trend. In this paper, we aim to maximize the energy efficiency in VLC-NOMA networks. Assuming perfect knowledge of the channel state information of user equipment, the energy efficiency maximization problem is formulated as a mixed integer nonlinear programming problem. To solve this problem, the joint user grouping and power allocation (JUGPA) is proposed including user grouping and power allocation. In user grouping phase, we utilize the average of channel gain among all user equipment and propose a dynamic user grouping algorithm with low complexity. The proposed scheme exploits the channel gain differences among users and divides them into multiple groups. In power allocation phase, we proposed a power allocation algorithm for maximizing the energy efficiency for a given NOMA group. Thanks to the objective function is fraction form and non-convex, we firstly transform it to difference form and convex function. Then, we derive the closed-form optimal power allocation expression that maximizes the energy efficiency by Dinkelbach method and Lagrange dual decomposition method. Simulation results show that the JUGPA can effectively improve energy efficiency of the VLC-NOMA networks.  相似文献   

20.
In this paper, we investigate the physical-layer security of a secure communication in single-input multiple-output (SIMO) cognitive radio networks (CRNs) in the presence of two eavesdroppers. In particular, both primary user (PU) and secondary user (SU) share the same spectrum, but they face with different eavesdroppers who are equipped with multiple antennas. In order to protect the PU communication from the interference of the SU and the risks of eavesdropping, the SU must have a reasonable adaptive transmission power which is set on the basis of channel state information, interference and security constraints of the PU. Accordingly, an upper bound and lower bound for the SU transmission power are derived. Furthermore, a power allocation policy, which is calculated on the convex combination of the upper and lower bound of the SU transmission power, is proposed. On this basis, we investigate the impact of the PU transmission power and channel mean gains on the security and system performance of the SU. Closed-form expressions for the outage probability, probability of non-zero secrecy capacity, and secrecy outage probability are obtained. Interestingly, our results show that the strong channel mean gain of the PU transmitter to the PU’s eavesdropper in the primary network can enhance the SU performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号