首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Diffusion in generic quasi integrable systems at small values of the perturbing parameters has been a very studied subject since the pioneering work of Arnold [3]. For moderate values of the perturbing parameter a different kind of diffusion occurs, the so called Chirikov diffusion, since the Chirikov’s papers [11, 13]. The two underlying mechanisms are different, the first has an analytic demonstration only on specific models, the second is based on an heuristic argument. Even if the relation between chaos and diffusion is far to be completely understood, a key role is played by the topology of hyperbolic manifolds related to the resonances. Different methods can be found in the literature for the detection of hyperbolic manifolds, at least for two dimensional systems. For higher dimensional ones some sophisticated methods have been recently developed (for a review see [55]). In this paper we review some of these methods and an easy tool of detection of invariant manifolds that we have developed based on the Fast Lyapunov Indicator. The relation between the topology of hyperbolic manifolds and diffusion is discussed in the framework of Arnold diffusion.  相似文献   

2.
In this paper different topologies of populations of FitzHugh-Nagumo neurons have been introduced in order to investigate the role played by the noise in the network. Each neuron is subjected to an independent source of noise. In these conditions the behavior of the population depends on the connection among the elements. By analyzing several kinds of topology (ranging from regular to random) different behaviors have been observed. Several topologies behave in an optimal way with respect to the range of noise level leading to an improvement in the stimulus response coherence, while others with respect to the maximum values of the performance index. However, the best results in terms of both the suitable noise level and high stimulus response coherence have been obtained when a diversity in neuron characteristic parameters has been introduced and the neurons have been connected in a small-world topology.  相似文献   

3.
Yoshiharu Maeno 《Physica A》2010,389(21):4755-3426
Stochasticity and spatial heterogeneity are of great interest recently in studying the spread of an infectious disease. The presented method solves an inverse problem to discover the effectively decisive topology of a heterogeneous network and reveal the transmission parameters which govern the stochastic spreads over the network from a dataset on an infectious disease outbreak in the early growth phase. Populations in a combination of epidemiological compartment models and a meta-population network model are described by stochastic differential equations. Probability density functions are derived from the equations and used for the maximal likelihood estimation of the topology and parameters. The method is tested with computationally synthesized datasets and the WHO dataset on the SARS outbreak.  相似文献   

4.
A cellular automaton model for describing the fracture of mechanically loaded heterogeneous materials has been constructed. Two extreme scenarios of the fracture process have been revealed, i.e., the dispersion (percolation) scenario, according to which defects accumulate uniformly throughout the volume of the material, and the correlated scenario (growth of predominantly a single source), which have been observed during the fracture of real materials. It has been shown that, in the case of the correlated fracture, a crack grows through the mechanism of ejection of double kinks of its front. In the intermediate case, the process occurs according to both scenarios: first, the slow accumulating (percolation) fracture and, then, the rapid correlated fracture; by the time the latter process begins, a self-organized critical state with a power-law size distribution of cracks typical of it has been formed.  相似文献   

5.
In contrast to well-mixed populations, discrete interaction patterns have been shown to support cooperation in the prisoner’s dilemma game, and a scale-free network topology may even lead to a dominance of cooperation over defection. The majority of studies assumes a strategy adoption scheme based on accumulated payoffs. The use of accumulated payoffs, however, is incompatible with the integral property of the underlying replicator dynamics to be invariant under a positive affine transformation of the payoff function. We show that using instead the payoff per interaction to determine the strategy spread, which has been suggested recently and recovers the required invariance, results in fundamentally different dynamical behavior under a synchronized strategy adoption considered here. Most notably, in such an efficiency based scenario the advantage of a scale-free network topology vanishes almost completely. We present a detailed explanation of the fundamentally altered dynamical behavior.  相似文献   

6.
B C PAUL  P THAKUR  M M VERMA 《Pramana》2013,81(4):691-718
Cosmological models with modified Chaplygin gas (MCG) in the framework of Horava–Lifshitz (HL) theory of gravity, both with and without detailed balance, are obtained. The equation of state (EOS) for a MCG contains three unknown parameters namely, A, α, B. The allowed values of some of these parameters of the EOS are determined using the recent astrophysical and cosmological observational data. Using observational data from H(z)-z, baryon acoustic oscillation (BAO) peak parameter and cosmic microwave background (CMB) shift parameter we study cosmologies in detailed-balance and beyond detailed-balance scenario. In this paper we take up the beyond detailed-balance scenario in totality and contribution of dark radiation in detailed-balance scenario on the parameters of the EOS. We explore the effect of dark radiation on the whole range of the effective neutrino parameter (ΔN ν ) to constrain matter contributing parameter B in both the detailed-balance and the beyond detailed-balance scenarios. It has been observed that greater the dark radiation less the matter contribution in the MCG in both the scenario considered here. In order to check the validity of beyond detailed-balance scenario we plot supernovae magnitudes (μ) with red-shift of Union2 data and then the variation of state parameter with redshift is studied. It is noted that beyond detailed-balance scenario is suitable for cosmological model in HL gravity with MCG.  相似文献   

7.
Laser joining parameters play a very significant role in determining the quality of laser transmission joining between PET films and 316L stainless steel plates. In the present work, Laser power, joining speed and stand-off-distance were considered as joining parameters. The parameters that influence the quality of laser transmission joining were optimized using response methodology for achieving good joint strength and minimal joint width. The central composite second-order Rotational Design (CCRD) has been utilized to plan the experiments and response surface methodology (RSM) is employed to develop mathematical relationships between joining parameters and desired responses. Based on the developed mathematical models, the interaction effects of the process parameters on laser transmission joining were investigated and optimum joining parameters were achieved. The experimental values nearly agree with the predicted values from mathematical models, indicates that the models can predict the responses adequately and optimize the key process parameters quickly.  相似文献   

8.
《Physica A》2006,362(2):295-304
The new scheme employed (throughout the “thermodynamic phase space”), in the statistical thermodynamic investigation of classical systems, is extended to quantum systems. Quantum Nearest Neighbor Probability Density Functions (QNNPDF's) are formulated (in a manner analogous to the classical case) to provide a new quantum approach for describing structure at the microscopic level, as well as characterize the thermodynamic properties of material systems. Since QNNPDF's describe microstructure in “random neighborhoods”, the new scheme may be viewed as an “elastic cavity” approach (with “elastic” walls). A major point of this paper is that it relates the free energy of an assembly of interacting particles to QNNPDF's. Application to the simple case of dilute, weakly degenerate gases has been outlined.  相似文献   

9.
With new generation neutron sources, traditional neutron detectors cannot satisfy the demands of the applications, especially under high flux. Furthermore, facing the global crisis in ~3He gas supply, research on new types of neutron detector as an alternative to ~3He is a research hotspot in the field of particle detection. GEM(Gaseous Electron Multiplier) neutron detectors have high counting rate, good spatial and time resolution, and could be one future direction of the development of neutron detectors. In this paper, the physical process of neutron detection is simulated with Geant 4 code, studying the relations between thermal conversion efficiency, boron thickness and number of boron layers. Due to the special characteristics of neutron detection, we have developed a novel type of special ceramic n THGEM(neutron THick GEM) for neutron detection. The performance of the n THGEM working in different Ar/CO_2 mixtures is presented, including measurements of the gain and the count rate plateau using a copper target X-ray source. A detector with a single n THGEM has been tested for 2-D imaging using a ~(252)Cf neutron source. The key parameters of the performance of the n THGEM detector have been obtained, providing necessary experimental data as a reference for further research on this detector.  相似文献   

10.
徐桂舟  徐展  丁贝  侯志鹏  王文洪  徐锋 《物理学报》2018,67(13):137508-137508
磁性斯格明子由于拓扑的保护性,具有很高的稳定性和较小的临界驱动电流,有望应用于未来的赛道存储器件中.而在中心对称体系,由于偶极作用的各向同性,磁泡的拓扑性和螺旋度都呈现出多样性的特征.其中非平庸的磁泡即等同于磁性斯格明子.我们通过近期实验结果,结合微磁学模拟的方法,发现在中心对称体系中磁斯格明子的拓扑性会受到体系垂直各向异性的调控.另外在加磁场的演变过程中,会很大程度上依赖于基态畴的畴壁特性.磁场的倾斜或者一定的面内各向异性也会改变磁斯格明子的形态.通过对材料的基态磁结构及磁各向异性的调节,辅助以面内分量的控制,可以对基态磁畴、进而对磁斯格明子的拓扑性实现调控.这对磁斯格明子在电流驱动存储器件中的应用具有重要意义.  相似文献   

11.
The concept of the smart structure integrates structural engineering, sensing, control systems, and actuation to provide a mechanical assembly that is capable of responding to its environment and/or loading conditions. The realization of the smart structure requires integration of skills in a variety of scientific and engineering disciplines ranging from mechanical engineering through materials science into signal processing, data analysis, sensing, and actuation. The sensing technology must have a number of key features of which the ability to take distributed measurements of various parameters throughout the structure is paramount. Therefore, fiber optics technology promises to have a significant role to play in the evolution of the smart structures concept. This article analyzes this role in detail, presents an assessment of the current state of the art in fiber optic technology related to smart structures, and presents a scenario for future developments.  相似文献   

12.
13.
In this work, we study the theory of inflation with the non-minimally coupled quadratic, standard model Higgs, and hilltop potentials, through ξφ~2R term in Palatini gravity. We first analyze observational parameters of the Palatini quadratic potential as functions of ξ for the high-N scenario. In addition to this, taking into account that the inflaton field f has a non-zero vacuum expectation value v after inflation, we display observational parameters of well-known symmetry-breaking potentials. The types of potentials considered are the Higgs potential and its generalizations, namely hilltop potentials in the Palatini formalism for the high-N scenario and the low-N scenario. We calculate inflationary parameters for the Palatini Higgs potential as functions of v for different ξ values, where inflaton values are both φv and φv during inflation, as well as calculating observational parameters of the Palatini Higgs potential in the induced gravity limit for high-N scenario. We illustrate differences between the Higgs potential's effect on ξ versus hilltop potentials, which agree with the observations for the inflaton values for φv and ξ, in which v1 for both these high and low N scenarios. For each considered potential, we also display n_s-r values fitted to the current data given by the Keck Array/BICEP2 and Planck collaborations.  相似文献   

14.
This work has been prepared for the purpose of presenting the methodology and uses of the Monte Carlo simulation technique as applied in the evaluation of investment projects to analyze and assess risk. In the deterministic appraisal the basic decision rule for a project is simply to accept or reject the project depending on whether its net present value (NPV) is positive or negative, respectively. Similarly, when choosing among alternative (mutually exclusive) projects, the decision rule is to select the one with the highest NPV, provided that it is positive. Recognizing the fact that the key project variables (as: volume of sales, sales price, costs) are not certain, an appraisal report is usually supplemented to include sensitivity and scenario analysis tests. Both tests are static and rather arbitrary in their nature. During the simulation process, random scenarios are built up using input values for the project's key uncertain variables, which are selected from appropriate probability distributions. The results are collected and analyzed statistically so as to arrive at a probability distribution of the potential outcomes of the project and to estimate various measures of project risk. Received 25 September 2000  相似文献   

15.
Combining a single-molecule study of protein binding with a coarse grained molecular dynamics model including solvent (water molecules) effects, we find that biomolecular recognition is determined by flexibilities in addition to structures. Our single-molecule study shows that binding of CBD (a fragment of Wiskott-Aldrich syndrome protein) to Cdc42 involves bound and loosely bound states, which can be quantitatively explained in our model as a result of binding with large conformational changes. Our model identified certain key residues for binding consistent with mutational experiments. Our study reveals the role of flexibility and a new scenario of dimeric binding between the monomers: first bind and then fold.  相似文献   

16.
Absolute values of two-particle transfer cross sections along the Sn-isotopic chain are calculated. They agree with measurements within errors and without free parameters. Within this scenario, the predictions concerning the absolute value of the two-particle transfer cross sections associated with the excitation of the pairing vibrational spectrum expected around the recently discovered closed shell nucleus(50)(132)Sn(82) and the very exotic nucleus (50)(100)Sn(50) can be considered quantitative, opening new perspectives in the study of pairing in nuclei.  相似文献   

17.
How to narrow the gap of security between theory and practice has been a notoriously urgent problem in quantum cryptography. Here, we analyze and provide experimental evidence of the clock jitter effect on the practical continuous-variable quantum key distribution (CV-QKD) system. The clock jitter is a random noise which exists permanently in the clock synchronization in the practical CV-QKD system, it may compromise the system security because of its impact on data sampling and parameters estimation. In particular, the practical security of CV-QKD with different clock jitter against collective attack is analyzed theoretically based on different repetition frequencies, the numerical simulations indicate that the clock jitter has more impact on a high-speed scenario. Furthermore, a simplified experiment is designed to investigate the influence of the clock jitter.  相似文献   

18.
Unstable particles, together with their stable decay products, constitute probability collectives that are defined as Hilbert spaces with dimension higher than one, nondecomposable in a particle basis. Their structure is considered in the framework of Birkhoff-von Neumann's Hilbert subspace lattices. Bases with particle states are related to bases with a diagonal scalar product by a Hilbert-bein involving the characteristic decay parameters (in some analogy to the n-bein structures of metrical manifolds). Probability predictions as expectation values, involving unstable particles, have to take into account all members of the higher dimensional collective. For example, the unitarity structure of the S-matrix for an unstable particle collective can be established by a transformation with its Hilbert-bein.  相似文献   

19.
Hypertrophic cardiomyopathy (HCM) is a common primary inherited cardiac muscle disorder, defined clinically by the presence of unexplained left ventricular hypertrophy. The detection of affected patients remains challenging. Genetic testing is limited because only in 50%-60% of all HCM diagnoses an underlying mutation can be found. Furthermore, the disease has a varied clinical course and outcome, with many patients having little or no discernible cardiovascular symptoms, whereas others develop profound exercise limitation and recurrent arrhythmias or sudden cardiac death. Therefore prospective screening of HCM family members is strongly recommended. According to the current guidelines this includes serial echocardiographic and electrocardiographic examinations. In this study we investigated the capability of cardiac magnetic field mapping (CMFM) to detect patients suffering from HCM. We introduce for the first time a combined diagnostic approach based on map topology quantification using Kullback-Leibler (KL) entropy and regional magnetic field strength parameters. The cardiac magnetic field was recorded over the anterior chest wall using a multichannel-LT-SQUID system. CMFM was calculated based on a regular 36 point grid. We analyzed CMFM in patients with confirmed diagnosis of HCM (HCM, n=33, 43.8+/-13 years, 13 women, 20 men), a control group of healthy subjects (NORMAL, n=57, 39.6+/-8.9 years; 22 women and 35 men), and patients with confirmed cardiac hypertrophy due to arterial hypertension (HYP, n=42, 49.7+/-7.9 years, 15 women and 27 men). A subgroup analysis was performed between HCM patients suffering from the obstructive (HOCM, n=19) and nonobstructive (HNCM, n=14) form of the disease. KL entropy based map topology quantification alone identified HCM patients with a sensitivity of 78.8% and specificity of 86.9% (overall classification rate 84.8%). The combination of the KL parameters with a regional field strength parameter improved the overall classification rate to 87.9% (sensitivity: 84.8%, specificity: 88.9%, area under ROC curve: 0.94). KL measures applied to discriminate between HOCM and HNCM patients showed a correct classification of 78.8%. The combination of one KL and one regional parameter again improved the overall classification rate to 97%. A preliminary prospective analysis in two HCM families showed the feasibility of this diagnostic approach with a correct diagnosis of all 22 screened family members (1 HOCM, 4 HNCM, 17 normal). In conclusion, Cardiac Magnetic Field Mapping including KL entropy based topology quantifications is a suitable tool for HCM screening.  相似文献   

20.
为了实现高压等离子体放电的研究,研制了一套满足负载要求的脉冲电源系统。该电源系统采用脉冲电容型电源拓扑方案并结合理论计算,为实际电源研制提供关键的指导方案。为了更好地进行器件参数选型,采用PSpice软件搭建仿真模型,通过响应波形分析得到满足系统要求的器件参数。此外,为该电源系统研制一套满足等离子体放电要求的控制系统。该控制系统采用通信方式为串口通信、Labview搭建上位机界面以及FPGA完成下位机的逻辑系统配置,系统简单高效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号