首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国颗粒学报》2005,3(1-2):26
The unique characteristics of gas-solids two-phase flow and fluidization in terms of the flow structures and the apparent behavior of particles and fluid-particle interactions are closely linked to physical properties of the particles, operating conditions and bed configurations. Fluidized beds behave quite differently when solid properties, gas velocities or vessel geometries are varied. An understanding of hydrodynamic changes and how they, in turn, influence the transfer and reaction characteristics of chemical and thermal operations by variations in gas-solid contact, residence time, solid circulation and mixing and gas distribution is very important for the proper design and scale-up of fluidized bed reactors. In this paper, rather than attempting a comprehensive survey, we concentrate on examining some important positive and negative impacts of particle sizes, bubbles, clusters and column walls on the physical and chemical aspects of chemical reactor performance from the engineering application point of view with the aim of forming an adequate concept for guiding the design of multiphase fluidized bed chemical reactors.One unique phenomenon associated with particle size is that fluidized bed behavior does not always vary monotonically with changing the average particle size. Different behaviors of particles with difference sizes can be well understood by analyzing the relationship between particle size and various forces. For both fine and coarse particles, too narrow a distribution is generally not favorable for smooth fluidization. A too wide size distribution, on the other hand, may lead to particle segregation and high particle elutriation. Good fluidization performance can be established with a proper size distribution in which inter-particle cohesive forces are reduced by the lubricating effect of fine particles on coarse particles for Type A, B and D particles or by the spacing effect of coarse particles or aggregates for Type C powders.Much emphasis has been paid to the negative impacts of bubbles, such as gas bypassing through bubbles, poor bubble-to-dense phase heat & mass transfer, bubble-induced large pressure fluctuations, process instabilities, catalyst attrition and equipment erosion, and high entrainment of particles induced by erupting bubbles at the bed surface. However, it should be noted that bubble motion and gas circulation through bubbles, together with the motion of particles in bubble wakes and clouds, contribute to good gas and solids mixing. The formation of clusters can be attributed to the movement of trailing particles into the low-pressure wake region of leading particles or clusters. On one hand, the existence of down-flowing clusters induces strong solid back-mixing and non-uniform radial distributions of particle velocities and holdups, which is undesirable for chemical reactions. On the other hand, the formation of clusters creates high solids holdups in the riser by inducing internal solids circulations, which are usually beneficial for increasing concentrations of solid catalysts or solid reactants.Wall effects have widely been blamed for complicating the scale-up and design of fluidized-bed reactors. The decrease in wall friction with increasing the column diameter can significantly change the flow patterns and other important characteristics even under identical operating conditions with the same gas and particles. However, internals, which can be considered as a special wall, have been used to improve the fluidized bed reactor performance.Generally, desirable and undesirable dual characteristics of interaction between particles and fluid are one of the important natures of multiphase flow. It is shown that there exists a critical balance between those positive and negative impacts. Good fluidization quality can always be achieved with a proper choice of right combinations of particle size and size distribution, bubble size and wall design to alleviate the negative impacts.  相似文献   

2.
Pressurized fluidized beds have been developed in quite a few industrial applications because of intensified heat and mass transfer and chemical reaction. The bubble behaviors under elevated pressure, strongly influencing the fluidization and reaction conversion of the whole system, are of great research significance. In this work, the bubble behaviors of Geldart B particle in a pseudo two-dimensional (2D) pressurized fluidized bed were experimentally studied based on digital image analysis technique. The effects of pressure and fluidization gas velocity on the general bubble behaviors (i.e., size, shape and spatial distribution) and the dynamic characteristics, such as the time-evolution of voidage distribution and local flow regimes, were comprehensively investigated. Results show that increasing pressure reduces the stability of bubbles and facilitates gas passing through the emulsion phase, resulting in the “smoother” fluidization state with smaller bubbles and declined bubble fraction and standard deviation. The equivalent bubble diameter and bubble aspect ratio increase with the increasing gas velocity while decrease as pressure rises. The elevated pressure reduces bubbles extension in the vertical direction, prohibits the “short pass” of fluidization gas in large oblong bubbles/slugs and benefits the gas–solid interaction. The flow regimes variation with gas velocity is affected by the elevated pressure, and demonstrates different features in different local positions of the bed.  相似文献   

3.
Static electricity has an important effect on gas–solid fluidized bed reactor fluidization performance. In the process of fluidization, electrostatic interaction between particles will obviously accelerate particle agglomerate formation, which consequently reduces the fluidization performance. Pulsed gas flow injection is an efficient method to enhance particle mixing, thereby weakening the occurrence of particle agglomerate. In this study, the two-dimensional hybrid pulsed fluidized bed is established. The flow characteristics are studied by using the coupled CFD-DEM numerical simulation model considering electrostatic effects. Influences of different pulsed frequencies and gas flow ratios on fluidized bed fluidization performance are investigated to obtain the optimal pulsed gas flow condition. Results show that in the presence of static electricity, the bubble generation position is lower, which is conducive to the particle flow. Pulsed gas flow can increase the particle velocity and improve the diffusion ability. The bubble generation time is different at different frequencies, and the frequency of 2.5 Hz has the most obvious effect on the flow characteristics. Different gas flow ratios have significant impacts on the particle movement amplitude. When the pulse gas flow accounts for a large ratio, the particle agglomerate tends to be larger. Therefore, in order to improve the fluidization effect, the ratio of pulsed gas flow to stable gas flow should be appropriately reduced to 0.5 or less.  相似文献   

4.
Previous reports and current studies show that fluidization of some Geldart A particles is enhanced by in-creasing bed temperature.Both the averaged local particle concentration and the particle concentration in the dense phase decrease with increasing bed temperature,at constant superficial gas velocities.However,conventional models fail to predict these changes,because the role of interparticle forces is usually neglected at different bed temperatures.Here.the temperature increases,the interparticle attractive forces decrease while the interparticle repulsive forces increase.Consequently.fluidization behaviors of some Geldart A particles seem to increasingly shift from typical Geldart A towards B with increasing temperature.  相似文献   

5.
Simulations of the gas fluidization of a cohesive powder were performed using the Stokesian Dynamics method and an agglomeration-deagglomeration model to investigate methods of improving the fluidizability of fine powders. Three techniques (a) high gas velocity (b) vibration-assisted fluidization and (c) tapered fluidizer were used in the simulations which provided detailed information on the bed microscopy such as the motion of 1 O0 particles in a fluidizing vessel along with the formation and destruction of cohesive bonds dudng collisions. While all three techniques were found to effectively improve the fluidizability of a strongly cohesive powder, we suggest a combination of high velocity fluidization assisted by extemal vibration of the fluidized bed to minimize entrainment of particles.  相似文献   

6.
Bottom bed regimes in a circulating fluidized bed boiler   总被引:1,自引:0,他引:1  
This paper extends previous work on the fluidization regimes of the bottom bed of circulating flyidized bed (CFB) boilers. Pressure measurements were performed to obtain the time-average bottom bed voidage and to study the bed pressure fluctuations. The measurements were carried out in a 12 MWth CFB boiler operated at 850°C and also under ambient conditions (40°C). Two bubbling regimes were identified: a “single bubble regime” with large single bubbles present at low fluidization velocities, and, at high fluidization velocities, an “exploding bubble regime” with bubbles often stretching all the way from the air distributor to the surface of the bottom bed. The exploding bubble regime results in a high through-flow of gas, indirectly seen from the low average voidage of the bottom bed, which is similar to that of a stationary fluidized bed boiler, despite the higher gas velocities in the CFB boiler. Methods to determine the fluidization velocity at the transition from the single to the exploding bubble regime are proposed and discussed. The transition velocity increases with an increase in particle size and bed height.  相似文献   

7.
The multi-scale characteristics of clusters in a fast fluidized bed and of agglomerates in a fluidized bed of cohesive particles are discussed on the basis of large amounts of experiments.The cluster size and concentration are dominated by the local voidage of the bed.A cluster consists of many sub-clusters with different sizes and discrete par-ticles,and the sub-cluster size probability density distribution appears as a negative exponential function.The agglom-erates in a fluidized bed of cohesive particles also possess the multi-scale nature.The large agglomerates form a fixed bed at the bottom,the medium agglomerates are fluidized in the middle,and the small agglomerates and discrete parti-cles become the dilute-phase region in the upper part of the bed.The agglomerate size is mainly affected by cohesive forces and gas velocity.The present models for prediction the size of clusters and agglomerates can not tackle the in-trinsic mechanism of the multi-scale aggregation,and a challenging problem for establishing mechanistic model is put forward.  相似文献   

8.
Supercritical water (SCW) fluidized bed is a new reactor concept for hydrogen production from biomass or coal gasification. In this paper, a comparative study on flow structure and bubble dynamics in a supercritical water fluidized bed and a gas fluidized bed was carried out using the discrete element method (DEM). The results show that supercritical water condition reduces the incipient fluidization velocity, changes regime transitions, i.e. a homogeneous fluidization was observed when the superficial velocity is in the range of the minimum fluidization velocity and minimum bubbling velocity even the solids behave as Geldart B powders in the gas fluidized bed. Bubbling fluidization in the supercritical water fluidized bed was formed after superficial velocity exceeds the minimum bubbling velocity, as in the gas fluidized bed. Bubble is one of the most important features in fluidized bed, which is also the emphasis in this paper. Bubble growth was effectively suppressed in the supercritical water fluidized bed, which resulted in a more uniform flow structure. By analyzing a large number of bubbles, bubble dynamic characteristics such as diameter distribution, frequency, rising path and so on, were obtained. It is found that bubble dynamic characteristics in the supercritical water fluidized bed differ a lot from that in the gas fluidized bed, and there is a better fluidization quality induced by the bubble dynamics in the supercritical water fluidized bed.  相似文献   

9.
Fluidization of fine cohesive powders is seriously restricted by the strong interparticle cohesion. The rational combination of nanoparticles with fine cohesive powders is expected to obtain composite particles with improved flowability. In this work, we firstly reviewed the sandwich and three-point contact models regarding the fundamental principles of nano-additives in reducing cohesiveness. Based on these previous models, the effects of the size of nanoparticles, their agglomeration and coverage on the surface of cohesive powders in reducing interparticle forces were theoretically analyzed. To validate the theory effectiveness for the irregularly shaped cohesive powders, an extreme case of cubic powders coated with silica nanoparticles was fabricated, and the flowability of the composite particles was determined experimentally. Ultimately, based on force balance of a single particle, a semi-theoretical criterion for predicting the fluidization behavior of coated powders was developed to guide the practical applications of improving the flowability of cohesive powders through structural design and modulation.  相似文献   

10.
The effects of superficial gas velocity and mechanical stirring speed on the precise regulation of flow regimes for cohesive SiO2 powders (mean diameter is 16 μm) were experimentally investigated in a stirring-assisted fluidized bed. The results showed that compared with the agglomerates formed in the non-assisted fluidization of cohesive SiO2 powders, the introduction of mechanical stirring could effectively reduce the size of agglomerates and well disperse the agglomerates during fluidization. The best regulation range of agglomerate particulate fluidization can be achieved at 600 rpm when agglomerate sizes were reduced to below 200 μm. Further investigation based on the operational phase diagram revealed that transformations of flow regimes were dominated by both stirring speed and gas velocity. The stirring applied enlarges the operational range of agglomerate particulate fluidization (APF) with a delayed onset of bubbling for cohesive particles. However, the exorbitant speed increases the collision velocity and contact area between small agglomerates, which results in the formation of unstable agglomerates and the whirlpool of powder.  相似文献   

11.
The fluidized beds are widely used in a variety of industries where heat transfer properties of the fluidized system become important for successful operation. Fluidized are preferred in heat recovery processes because of their unique ability of rapid heat transfer and uniform temperature. Fine powders handling and processing technologies have received widespread attention due to increased use of fine powders in the manufacture of drugs, cosmetics, plastics, catalysts, energetics and other advanced materials. A better understanding of fluidization behavior of fine powders is of great importance in applications involving heat transfer, mass transfer, mixing, transporting and modifying surface properties etc. The difficulty in putting the fine powders in suspension with the fluidizing gas is related to the cohesive structure and to the physical forces between the primary particles. The sound waves agitate bubbling and this results in improving solids mixing in the fluidized bed. The improved solids mixing results in uniform and smooth fluidization, which leads to better heat transfer rates in the fluidized bed.  相似文献   

12.
This paper presents experimental and computational studies on the flow behavior of a gas-solid fluidized bed with disparately sized binary particle mixtures. The mixing/segregation behavior and segregation efficiency of the small and large particles are investigated experimentally.Particle composition and operating conditions that influence the fluidization behavior of mixing/segregation are examined. Based on the granular kinetics theory, a multi-fluid CFD model has been developed and verified against the experimental results. The simulation results are in reasonable agreement with experimental data. The results showed that the smaller particles are found near the bed surface while the larger particles tend to settle down to the bed bottom in turbulent fluidized bed. However, complete segregation of the binary particles does not occur in the gas velocity range of 0.695--0.904 m/s. Segregation efficiency increases with increasing gas velocity and mean residence time of the binary particles, but decreases with increasing the small particle concentration. The calculated results also show that the small particles move downward in the wall region and upward in the core. Due to the effect of large particles on the movement of small particles, the small particles present a more turbulent velocity profile in the dense phase than that in the dilute phase.  相似文献   

13.
Numerical simulations of gas–solid fluidized beds based on the kinetic theory of granular flow exhibit a significant dependence on domain discretization. Bubble formation, bubble size and shape all vary greatly with the discretization, and the use of an inappropriate scale resolution leads to inaccurate predictions of fluidization hydrodynamics. In this study, grid-independent solutions of the two fluid model were examined by comparing the bed expansions obtained from numerical simulations with experimental results and empirical predictions, based on bubbling fluidized beds of Geldart B particles. Grid independence was achieved with a grid resolution equal to 18 times the particle diameter. The simulation results were compared with previously published data for verification purposes. The results of this work should provide a guideline for choosing the appropriate grid size and thereby minimize the time and expense associated with large simulations.  相似文献   

14.
DEM simulation of polydisperse systems of particles in a fluidized bed   总被引:1,自引:0,他引:1  
Numerical simulations based on three-dimensional discrete element model (DEM) are conducted for mono-disperse, binary and ternary systems of particles in a fluidized bed. Fluid drag force acting on each particle depending on its size and relative velocity is assigned. The drag coefficient corresponding to Ergun’s correlation is applied to the system of fluidized bed with particle size ratios of 1:1 for the mono-disperse system, 1:1.2, 1:1.4 and 1:2 for the binary system and 1:1.33:2 for the ternary system b...  相似文献   

15.
As is known, fluidization of a bed of solid particles by liquid or gas filtration takes place for certain critical values of the parameters of the filtration regime. The determination of these critical values and the nature of the transition is of interest in connection with the development of fluidization technology in many branches of industry, and also in connection with certain other questions, among which we note the problem of the suspension of a sand plug in an oil well.The two-dimensional fluidization problem has been examined previously [1] as the problem of the limiting equilibrium of a medium which cannot withstand arbitrarily small tensile stresses. This model describes well the behavior of many types of bulk media encountered in practice. However, many cases lie beyond the limits of this model because of the presence of bonding forces between the particles. Bonding may be due to the adhesive forces which arise during the fluidization of fine powders [2, 3], and/or to magnetic and electrostatic forces [3, 4]. Another example is the agglomeration of particles during gas fluidization when small amounts of liquid are injected [5]; still another is the case in which sand particles are surrounded by thin films of oil when a sand plug is suspended in an oil well.In the present paper an extension of the results obtained in [1] is used to examine fluidization of a bed with account taken of the bonding forces between the particles. The two- and three-dimensional problems are studied.  相似文献   

16.
This paper presents experimental and computational studies on the flow behavior of a gas-solid fluidized bed with disparately sized binary particle mixtures. The mixing/segregation behavior and segregation efficiency of the small and large particles are investigated experimentally. Particle composition and operating conditions that influence the fluidization behavior of mixing/segregation are examined. Based on the granular kinetics theory, a multi-fluid CFD model has been developed and verified against the experimental results. The simulation results are in reasonable agreement with experimental data. The results showed that the smaller particles are found near the bed surface while the larger particles tend to settle down to the bed bottom in turbulent fluidized bed. However, complete segregation of the binary particles does not occur in the gas velocity range of 0.695-0.904 m/s. Segregation efficiency increases with increasing gas velocity and mean residence time of the binary particles, but decreases with increasing the small particle concentration. The calculated results also show that the small particles move downward in the wall region and upward in the core. Due to the effect of large particles on the movement of small particles, the small particles present a more turbulent velocity profile in the dense phase than that in the dilute phase.  相似文献   

17.
Slugging represents one of the major regimes in fluidization, which occurs in small diameter beds with large bed height-to-diameter ratio or in large diameter beds with internals that resemble multiple small diameter fluidized beds. Slug types include round-nosed slug, wall slug and square-nosed slug. Studies of the slugs have been mainly focused on round-nosed or wall slugs known as half slug, typically occurring in Geldart group A particle fluidization. The square-nosed slug typically occurring for Geldart group D particles appears to be regarded as simple in its structure. The Electrical Capacitance Volume Tomography (ECVT) imaging of the square-nosed slugging phenomena conducted in this study reveals otherwise. That is the structure of the square-nosed slug is, in fact, complex, particularly with respect to its dynamic variation in fluidization. More broadly, this study examines experimentally the hydrodynamic characteristics of the square-nosed fluidization regime. Specifically, simultaneous measurements from multiple ECVT sensors provide non-invasive, continuous, 3-dimensional imaging of the entire flow region of the slugging bed and hence enabling the dynamic characterization of the evolution of the slugs. The analysis of the 3D images reconstructed for real-time gas–solid volume fraction profile of the slugging fluidized bed indicates that there are three different zones, namely, the bottom fluidization zone, the gas slug zone, and the solid slug zone, co-existing in the bed. The three zones present different hydrodynamic characteristics during the slug evolution. It is found that varying the gas velocity of the slugging bed mainly varies the maximum length of the gas slug zone, while it only has a minor effect on the lengths of the bottom fluidization zone and solid slug zone. It also has an insignificant effect on the solid volume fraction of the three zones.  相似文献   

18.
Most existing models for predicting bubble size and bubble frequency have been developed for freely bubbling fluidized beds. Accurate prediction of bubbling behavior in deep fluidized beds, however, has been a challenge due to the higher degree of bubble coalescence and break up, high probability of the slugging regime, partial fluidization, and chaotic behavior in the bubbling regime. In this work, the bubbling and fluidization behavior of potash particles was investigated in a deep fluidized bed employing a twin-plane electrical capacitance tomography (ECT) system. Solid volume fraction, average bubble velocity, average bubble diameter, and bubble frequency in both bubbling and slugging regimes were measured at two different bed height ratios (H/D = 3.5 and H/D = 3.78). This work is the first to illustrate a sequential view of bubbles at different superficial gas velocities in a fluidized bed. The results show that both the bubble diameter and rising velocity increased with increasing the superficial gas velocity for the two bed heights, with larger values observed in the deeper bed compared to the shallower one. Predicted values for bubble diameter, bubble rise velocity and bubble frequency from different models are compared with the experimental data obtained from the ECT system in this work. Good agreement has been achieved between the values predicted by the previous models and the experimental data for the bubble diameter and bubble rise velocity with an average absolute deviation of 16% and 15% for the bed height of 49 cm and 13% and 8% for the bed height of 53 cm, respectively.  相似文献   

19.
Fluidized Carbon Bed Cooling (FCBC) is an innovative investment casting process for directional solidification of superalloy components. It takes advantage of a fluidized bed with a base of small glassy carbon beads for cooling and other low-density particles that form an insulating layer by floating to the bed surface. This so-called “Dynamic Baffle” protects the fluidized bed from the direct heat input from the high-temperature heating zone and provides the basis for an improved bed microstructure. The prerequisites for a stable casting process are stable fluidization conditions where neither collapse of the bed nor particle blow out at excessive bubble formation occur.This work aimed to investigate the fluidization behavior of spherical carbon bed material in argon and air at temperatures between 20 to 350 °C. Systematic studies at reduced pressures using the FCBC prototype device were performed to understand the stable fluidization conditions at all stages of the investment casting process. The particle shape factor and size distribution characterization and the measurement of the powder’s minimum fluidization velocity and bed voidage show that this material can be fully utilized as a cooling and buoyancy medium during the FCBC process.  相似文献   

20.
A three phase mathematical model of simultaneous heat and mass transfer of a batch operation for a fluidized bed is presented. The three phases are a solid free bubble, emulsion and solid phases. The model employs an elaborate five equations porosity model. Various correlations for the minimum fluidization parameters are surveyed and compared with the adequate one is being adopted in the model. The governing equations together with the boundary and initial conditions are presented for a cyclic operation of the bed. These are numerically solved for a test case where the bed is charged with silica gel particles to dehumidify a process air stream. Thus the bed works in an air dehumidification mode/bed regeneration mode cyclic operation with matching conditions.Results for the bed operation are presented as the temperature and humidity ratio variations for the test case. The results indicate the ability of the developed model to provide the␣required data for the concerned batch operated fluidized bed. Received on 11 May 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号