首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 4 毫秒
1.
PM2.5 samples were collected at urban, industrial and coastal sites in Tianjin during winter, spring and summer in 2007. Concentrations of elemental carbon (EC) and organic carbon (OC) were analyzed using the IMPROVE thermal-optical reflectance (TOR) method. Both OC and EC exhibited a clear seasonal pattern with higher concentrations observed in the winter than in the spring and summer, due to cooperative effect of changes in emission rates and seasonal meteorology. The concentrations of carbonaceous species were also influenced by the local factors at different sampling sites, ranking in the order of industrial〉 urban 〉 coastal during winter and spring. In the summer, the port emissions, enriched with EC, had a significant impact on carbonaceous aerosols at the coastal site. Total carbonaceous aerosol accounted for 40.0% in winter, 33.8% in spring and 31.4% in summer of PM2.5 mass. Good correlation (R = 0.84-0.93) between OC and EC indicated that they had common dominant sources of combustion such as coal burning and traffic emissions. The daily average OC/EC ratios ranged from 2.1 to 9.1, the elevated OC/EC ratios being found in the winter. The estimated secondary organic carbon (SOC) accounted for 46.9%, 35.3% and 40.2% of the total OC in the winter, spring and summer, respectively, indicating that SOC may be an important contributor to fine organic aerosol in Tianjin.  相似文献   

2.
PM10 (particulate matter with aerodynamic diameter less than 10 μm) samples were collected simultaneously at nine urban sites and one urban background site during two intensive observation campaigns in 2006. Concentrations of elemental carbon (EC) and organic carbon (OC) in PM10 were analyzed using an element analyzer. The characteristics regarding spatial and seasonal distribution patterns of OC and EC concentrations and their contributions to PM10 mass, as well as correlation between OC and EC, were investigated in detail. The average OC and EC concentrations for urban sites were 57.5 ± 20.8 and 8.3 ± 3.9 μg/m^3, respectively, both being around three times higher than those for urban background site. As a whole, EC concentrations did not show distinct seasonal variations, though OC concentrations were generally higher in autumn than in spring. For urban sites, total carbonaceous aerosol (TCA) accounted for 33.2% in spring and 35.0% in autumn of PM10 mass. The OC and EC concentrations were found significantly correlated to each other both in spring and in autumn, implying the existence of similar emission sources such as coal combustion. The OC/EC ratios generally exceeded 2.0, indicating the presence of secondary organic carbon (SOC), whose estimated concentration for urban Chongqing was 26.7 and 39.4μg/m^3, accounting for 48.9 and 61.9% of the total OC observed in the samples, in spring and in autumn, respectively.  相似文献   

3.
4.
PM2.5 samples for 24 h were collected during winter in Tianjin,China. The ambient mass concentration and chemical composition of the PM2.5 were determined. Ionic species were analyzed by ion chromatog-raphy,while carbonaceous species were determined with the IMPROVE thermal optical reectance(TOR) method,and inorganic elements were measured by inductively coupled plasma-atomic emission spec-trometer. The daily PM2.5 mass concentrations ranged from 48.2 to 319.2 g/m3 with an arithmetic average of 144.6 g/m3. ...  相似文献   

5.
A study was conducted to quantify wintertime contributions of source types to carbonaceous PM2.5 at four urban sites in the Las Vegas Valley,one of the most rapidly growing urban areas in the southwestern United States.Twenty-four hour average ambient samples were collected for mass,ions,elements,organic carbon(OC),elemental carbon(EC),and trace organic markers analysis.Additional measurements were made to determine diurnal patterns in light-absorbing black carbon(BC) as a marker for combustion sources.Carbonaceous PM sources of on-road gasoline vehicles,on-road diesel vehicles,and off-road diesel engines were characterized with their chemical profiles,as well as fuel-based emission factors, using an In-Plume Sampling System.The Effective Variance Chemical Mass Balance(EV-CMB) source apportionment model was applied to the ambient samples collected,using source profiles developed in this study as well as profiles from other relevant studies.Four main sources contributed to PM2.5 carbon within the Las Vegas Valley:(1) paved road dust,(2) on-road gasoline vehicles,(3) residential wood combustion,and(4) on-road diesel vehicles.CMB estimated that on-road mixed fleet gasoline vehicles are the largest source for OC and EC at all the sites.The contribution of paved road dust to both OC and EC was 5-10%at the four sites.On-road diesel vehicles contribute 22%of the OC and 34%of the EC at a site near the city center,which is located immediately downwind of a major freeway.Residential wood combustion is a more important source than on-road diesel vehicles for two residential neighborhood sites.These results are consistent with our conceptual model,and the research methodology may be applied to studying other urban areas.  相似文献   

6.
To better understand the seasonal characteristics of urban organic aerosol (OA) in the North China Plain (NCP), PM2.5 samples in the urban atmosphere of Liaocheng were collected and analyzed. The molecular distribution of the organic markers in the urban atmosphere of Liaocheng reveals that n-alkanes (39.3%) was the most abundant species all year round, followed by saccharides (28.2%), phthalic acids (Ph, 20.8%), biogenic secondary organic aerosol (BSOA) tracers (9.4%), and polycyclic aromatic hydrocarbon (PAHs, 2.3%). PM2.5, organic carbon (OC), elemental carbon (EC), and primary organic markers exhibit the highest concentrations in winter, due largely to the increased biomass burning and coal combustion for house heating in local and surrounding regions. However, the concentration and relative abundance of BSOA are significantly higher in summer than other seasons, induced by the more favorable meteorological conditions that would promote the emissions of biogenic volatile organic compounds (BVOCs) and the secondary production of BSOA. The ratios of OC/EC and 3-methyl-1,2,3-butanetricarboxylic acid to cis-pinic acid plus cis-pinonic acid (MBTCA/(PA + PNA) are higher in the warm seasons than those in the cold seasons, indicating that the oxidation of OA is sensitive to air temperature. Compared to 2017, the concentration level of PAHs during wintertime decreased by 40.8%, confirming that the stringent regulation of coal burning is effective. The highest concentration of high molecular weight (HMW) n-alkanes and three anhydrosugars in winter, and the close correlation of levoglucosan with HMW n-alkanes suggests that the impact of biomass burning was more significant in winter. The same seasonal characteristic of the ratios of high-/low-NOx products with NOx and the strong correlation of high-/low-NOx products with levoglucosan indicate that the formation of isoprene SOA (SOAI) tracers was significantly influenced by anthropogenic emissions. The molecular compositions, the distributions of fire spots, backward trajectories of air masses, and correlation analysis suggest that air pollution events in spring were primarily resulted from biomass burning and secondary oxidation, while pollution events in winter were largely driven by the increased combustion sources, and promoted aqueous secondary formation. Our results suggest that the reduction of biomass and coal combustion should be taken into account to improve the urban air quality in the NCP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号