首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a new method for the control of input-affine nonlinear switched systems is introduced. The system switching conditions are assumed to be state-dependent, rather than the simpler input-dependent case. The main contribution of this research is that the effects of switched dynamics are interpreted as a model uncertainty bounded within a polynomial of states norms, with unknown coefficients. In order to prevent extra conservativeness, coefficients are tuned adaptively, so that a minimal state-varying bound could be achieved. This is unlike the conventional sliding mode control (SMC) scheme, where the existence of a constant and usually large upper bound must be presumed. To address the challenge of coping with such a new concept of uncertainty, an extended form of the original adaptive fuzzy sliding mode control scheme is proposed. Adaptation laws are used to tune a fuzzy controller and also real-time estimation of the instantaneous bound of uncertainties. Closed-loop stability is guaranteed by proposing a group of multiple Lyapunov functions (MLF) with tunable parameters. Except for the mild condition that the largest difference between the magnitudes of the sub-manifolds of the switched system is bounded by a polynomial of states with uncertain coefficients, the proposed method has the distinct advantage that no information about the dynamic equations or switching conditions is required in the control design stage. The proposed method is applied to the two challenging case studies, depicting the outstanding effectiveness of the method.  相似文献   

2.
This paper investigates the problem of robust reliable control for a class of switched nonlinear systems with time delay and actuator failures under asynchronous switching. When the switching instants of the controller experience delays with respect to those of the system, a kind of reliable controller design method is proposed, and the dwell time approach is utilized for the stability analysis. Sufficient conditions for the existence of the reliable controller are formulated in terms of a set of LMIs. Then the proposed approach is extended to take into account switched delay systems with Lipschitz nonlinearities and structured uncertainties. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.  相似文献   

3.
4.
5.
The robust exponential stabilization for a class of the uncertain switched neutral nonlinear systems with time-varying delays based on the sampled-data control is investigated in this paper. The closed-loop system with sampled-data control is modeled as a continuous time system with a time-varying piecewise continuous control input delay. Considering the relationship between the sampling period and the dwell time of two switching instants, sampling interval with no switching and sampling interval with one switching are discussed, respectively. By Wirtinger-based inequality, Wirtinger-based double integral inequality, and free-weighting matrix technique, some delay-dependent sufficient conditions are given to guarantee the exponential stability of uncertain switched neutral nonlinear systems under asynchronous switching. In addition, sampled-data controllers can also be designed by special operations of matrices. Finally, two numerical examples are used to show the effectiveness of the approach proposed in this paper.  相似文献   

6.
This paper addresses an adaptive output-feedback tracking problem of arbitrarily switched pure-feedback nonlinear systems with time-varying output constraints and unknown control directions. In this work, the tracking problem of switched non-affine nonlinear systems with output constraints is transformed into the stabilization problem of switched unconstrained affine systems. The main contribution of this paper is to present a universal formula for constructing an adaptive state-observer-based tracking controller with only two adaptive parameters by using the common Lyapunov function method. These adaptive parameters in the proposed control scheme are derived using the function approximation technique and a priori knowledge of the signs of control gain functions is not required. The theoretical analysis is presented for the Lyapunov stability and the constraint satisfaction of the resulting closed-loop system in the presence of arbitrary switchings.  相似文献   

7.
This paper investigates the problem of global fixed-time stabilization for a class of uncertain switched nonlinear systems with the general powers, namely, the powers of the considered systems can be different odd rational numbers, even rational numbers or both odd and even rational numbers. By skillfully using the common Lyapunov function method and the adding a power integrator technique, a common state feedback control strategy is developed. It is proved that the proposed controller can guarantee that the state of the resulting closed-loop system converges to zero for any given fixed time under arbitrary switchings. Simulation results of the liquid-level system are provided to show the effectiveness of the proposed method.  相似文献   

8.
This paper designs the dynamic output-feedback controller of switched positive systems subject to switching faults using an improved adaptive event-triggering mechanism. An adaptive event-triggering condition is addressed in the form of 1-norm by virtue of the measurable outputs of distributed sensors and the corresponding error. An error-based closed-loop control system whose dynamic variable relies on a state observer is obtained. A multiple copositive Lyapunov function is constructed to deal with the positivity and stability of the systems. The matrix decomposition and linear programming approaches are used to design and compute the controller and observer gains. An improved average dwell time scheme is proposed to handle the switching faults. The contributions of this paper lie in that: (i) An adaptive event-triggering mechanism is established for switched positive systems, (ii) A framework on the fault of switching signal is constructed, and (iii) A dynamic distributed controller is proposed for the considered systems. Finally, two illustrative examples are given to verify the effectiveness of the obtained results.  相似文献   

9.
In this article, an adaptive fuzzy output tracking control approach is proposed for a class of multiple‐input and multiple‐output uncertain switched nonlinear systems with unknown control directions and under arbitrary switchings. In the control design, fuzzy logic systems are used to identify the unknown switched nonlinear systems. A Nussbaum gain function is introduced into the control design and the unknown control direction problem is solved. Under the framework of the backstepping control design, fuzzy adaptive control and common Lyapunov function stability theory, a new adaptive fuzzy output tracking control method is developed. It is proved that the proposed control approach can guarantee that all the signals in the closed‐loop system are bounded and the tracking error remains an adjustable neighborhood of the origin. A numerical example is provided to illustrate the effectiveness of the proposed approach. © 2015 Wiley Periodicals, Inc. Complexity 21: 155–166, 2016  相似文献   

10.
Switching between the system and the associated observer or controller is in fact asynchronous in switched control systems. However, many times we assume it synchronous, for simplicity. In this paper, the robust observer design problems for a class of nonlinear uncertain switched systems for synchronous and asynchronous switching are addressed. At first, a robust observer under synchronous switching is proposed based on average dwell time approach. After that, the results are extended to robust observer design in the asynchronous case. In this case, two working modes are adopted to facilitate the studies on the issue. Finally, an extension case covering more practical applications is investigated under asynchronous switching. The designed observer cannot maintain the asymptotical stability of error state, but the eventual boundness is guaranteed. At the end, a numerical design example is given to illustrate our results.  相似文献   

11.
12.
This paper proposes a state-dependent switching control for a class of switched nonlinear systems, whose model describes a permanent magnet synchronous machine (PMSM) fed by a three-phase voltage source inverter. Due to its high torque density, high efficiency and wide velocity range, this electrical drive is widely used for traction and several applications in robotics, aerospace, electric vehicles among others. The proposed design conditions are based on a non-quadratic Lyapunov function, dependent on the machine shaft displacement, and assure asymptotic tracking of a pre-specified time-varying rotational velocity profile with guaranteed performance. Properties of the nonlinear system under consideration are used to derive design conditions expressed in terms of linear matrix inequalities that can be solved efficiently. Special cases involving asymptotic stability toward step and ramp velocity profiles are presented. Experimental results are used to validate the proposed technique.  相似文献   

13.
Different from the existing mathematical models for switched systems, where the switching from one subsystem to another subsystem is finished instantly, in this paper it is assumed that the switching is a transfer process. Moreover, there exists a basic transfer subsystem such that in the transfer process, the transfer subsystem is active. Based on the model of switched systems under constrained switching, this paper studies the controllability of such systems with time delay in the control function. A necessary and sufficient condition for controllability of such systems is established. Finally, an example is given to illustrate the utility of our results.  相似文献   

14.
15.
This paper investigates the problem of robust reliable control for a class of uncertain switched neutral systems under asynchronous switching, where the switching instants of the controller experience delays with respect to those of the system and the parameter uncertainties are assumed to be norm-bounded. A state feedback controller is proposed to guarantee exponential stability and reliability for switched neutral systems, and the dwell time approach is utilized for the stability analysis and controller design. A numerical example is given to illustrate the effectiveness of the proposed method.  相似文献   

16.
This paper deals with the stability analysis of a class of uncertain switched systems on non-uniform time domains. The considered class consists of dynamical systems which commute between an uncertain continuous-time subsystem and an uncertain discrete-time subsystem during a certain period of time. The theory of dynamic equations on time scale is used to study the stability of these systems on non-uniform time domains formed by a union of disjoint intervals with variable length and variable gap. Using the concept of common Lyapunov function, sufficient conditions are derived to guarantee the asymptotic stability of this class of systems on time scale with bounded graininess function. The proposed scheme is used to study the leader–follower consensus problem under intermittent information transmissions.  相似文献   

17.
This paper investigates the problem of event-triggered tracking control for switched networked nonlinear systems with asymmetric time-varying output constraints. To handle the output constraints, an output-dependent generic constraint function is constructed to describe relationship between the output and the performance requirement. Meanwhile, an event-triggering rule is designed to reduce communication frequency between the controller and the actuator, thereby reducing the burden of the network communication. Based on the common Lyapunov function method and event-triggered control strategy, an adaptive control method is designed, which can guarantee that the closed-loop signals are bounded and avoid the Zeno behavior. Different from existing results considering constraints, the proposed scheme not only relaxes the restricted condition of constraint boundaries but also both the cases with and without output constraints can be addressed simultaneously. Furthermore, the stability of the system can be guaranteed by the small-gain technique. Finally, two simulation examples are provided to demonstrate the effectiveness of the proposed scheme.  相似文献   

18.
19.
Recently Sorin C. Bengea and Raymond A. DeCarlo [Sorin C. Bengea, Raymond A. DeCarlo, Optimal control of switching systems, Automatica J. IFAC 41 (2005) 11-27] have offered a key result that the set of trajectories of the two-switched system is dense in the set of trajectories of the embedded system. This result was proven by means of relaxed controls and the Chattering Lemma. In this paper we use the Lyapunov theorem to give a new simple proof.  相似文献   

20.
In this paper, guaranteed cost control is investigated for switched random nonlinear systems against multiple state delays, model uncertainties, intermittent sensor and actuator faults. Other factors containing nonlinear dynamics, external disturbances as well as measurement noise are also considered. This is the first try to realize guaranteed cost control for uncertain switched random nonlinear systems against multiple time delays. In practice, color noise is more common than white noise in some specific situations. Thus, this paper considers random systems with color noise. In contrast to the previous study works, the suggested system can be applied to a wider range. First, a dynamic full-order output feedback controller is established to make the system stable. And an entire closed-loop system is got to achieve guaranteed cost control. Then, the multiple delay-dependent sufficient conditions are acquired through the piecewise Lyapunov function in the framework of linear matrix inequalities (LMIs). In the meantime, controller gain matrices are obtained. At last, two simulation examples are presented to verify the availability of the suggested approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号