首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we propose a deep Q-learning based algorithm for optimal resource allocation in energy harvested cognitive radio networks (EH-CRN). In EH-CRN, channel resources of primary users (PU) networks are shared with secondary users (SU) and energy harvesting allows nodes of the CRN to acquire energy from the environment for operation sustainability. However, amount of energy harvested from the environment is not fixed and requires dynamic allocation of resources for obtaining optimum network and throughput capacity. In this work, we overcome the limitations of existing Q-learning based resource allocation schemes which are constrained by large state-space systems and have slow convergence. Proposed deep Q-learning based algorithm improves the resource allocation in EH-CRN, while considering quality of service (QoS), energy and interference constraints. Simulation results show that proposed algorithm provide improved convergence and better resource utilization compared to other techniques in literature.  相似文献   

2.
伍春  江虹  尤晓建 《物理学报》2014,63(8):88801-088801
针对多跳认知无线电网络的多层资源分配问题,提出了协作去耦合方法和跨层联合方法,协作去耦合方法首先单独完成路径选择任务,随后进行信道与功率的博弈分配;跨层联合方法则通过博弈直接对路径、信道、功率三层资源进行同时分配,两种方法都综合考虑网络层、介质访问控制层、物理层的启发原则,引入了节点被干扰度信息和节点主动干扰度信息来辅助路径选择,设计了基于功率允许宽度信息的Boltzmann探索来完成信道与功率选择,设计了长链路和瓶颈链路替换消除机制以进一步提高网络性能,从促进收敛角度,选择序贯博弈并设计了具体的博弈过程,此外还分析了博弈的纳什均衡,讨论了两种算法的复杂度,仿真结果表明,协作去耦合方法和跨层联合方法在成功流数量、流可达速率、发射功耗性能指标上均优于简单去耦合的链路博弈、流博弈方法。  相似文献   

3.
With the rapid development of the Internet of Things (IoT) and the increasing number of wireless nodes, the problems of scare spectrum and energy supply of nodes have become main issues. To achieve green IoT techniques and resolve the challenge of wireless power supply, wireless-powered backscatter communication as a promising transmission paradigm has been concerned by many scholars. In wireless-powered backscatter communication networks, the passive backscatter nodes can harvest the ambient radio frequency signals for the devices’ wireless charging and also reflect some information signals to the information receiver in a low-power-consumption way. To balance the relationship between the amount of energy harvesting and the amount of information rate, resource allocation is a key technique in wireless-powered backscatter communication networks. However, most of the current resource allocation algorithms assume available perfect channel state information and limited spectrum resource, it is impractical for actual backscatter systems due to the impact of channel delays, the nonlinearity of hardware circuits and quantization errors that may increase the possibility of outage probability. To this end, we investigate a robust resource allocation problem to improve system robustness and spectrum efficiency in a cognitive wireless-powered backscatter communication network, where secondary transmitters can work at the backscattering transmission mode and the harvest-then-transmit mode by a time division multiple access manner. The total throughput of the secondary users is maximized by jointly optimizing the transmission time, the transmit power, and the reflection coefficients of secondary transmitters under the constraints on the throughput outage probability of the users. To tackle the non-convex problem, we design a robust resource allocation algorithm to obtain the optimal solution by using the proper variable substitution method and Lagrange dual theory. Simulation results verify the effectiveness of the proposed algorithm in terms of lower outage probabilities.  相似文献   

4.
Robust detection is employed in this work to cope with uncertainties on the channel gains and the noise power levels in a cognitive radio system based on linear cooperative spectrum sensing. The minimum number of samples required to achieve given false-alarm and missed-detection probabilities is derived as a function of the system parameter uncertainty levels and the nominal SNRs. A lower bound to the received symbol energy required to achieve reliable system operation is derived. This lower bound extends the concept of SNR wall to the case of a cooperative CR system with multiple secondary users. Then, a symmetric CR system scenario is investigated analytically and by numerical simulations. Simple asymptotic results are obtained in this case to relate the minimum number of samples required and the system parameters.  相似文献   

5.
Faced with limited network resources, diverse service requirements and complex network structures, how to efficiently allocate resources and improve network performances is an important issue that needs to be addressed in 5G or future 6G networks. In this paper, we propose a multi-timescale collaboration resource allocation algorithm for distributed fog radio access networks (F-RANs) based on self-learning. This algorithm uses a distributed computing architecture for parallel optimization and each optimization model includes large time-scale resource allocation and small time-scale resource scheduling. First, we establish a large time-scale resource allocation model based on long-term average information such as historical bandwidth requirements for each network slice in F-RAN by long short-term memory network (LSTM) to obtain its next period required bandwidth. Then, based on the allocated bandwidth, we establish a resource scheduling model based on short-term instantaneous information such as channel gain by reinforcement learning (RL) which can interact with the environment to realize adaptive resource scheduling. And the cumulative effects of small time-scale resource scheduling will trigger another round large time-scale resource reallocation. Thus, they constitute a self-learning resource allocation closed loop optimization. Simulation results show that compared with other algorithms, the proposed algorithm can significantly improve resource utilization.  相似文献   

6.
In this paper, opportunistic spectrum access is proposed for TDMA-based cognitive radio networks. In TDMA-based networks, the time is divided into slots with fixed length one by one. If a primary user (PU) needs to transmit data, one or several slots will be used. Otherwise, the slots are idle and can be utilized by secondary users (SUs). When SUs want to use the licensed channel, they should sense the channel at the beginning period of each slot. Then SUs exchange their sensing results and make the same decision about the channel state (idle or used by PUs), which could reduce the probability of false sensing. The aforementioned duration is called spectrum sensing phase. When SUs decide there is an idle channel, they contend to use the channel at the rest time of the slot. The duration is called access phase. In this period, SUs contend the channel with backoff counters. When the remaining time is less than one data transmission duration, SUs cannot transmit data packets. Therefore, the remaining time is wasted. To solve this problem, SUs transmit control packets with small length in the remaining time instead. The SU who exchange control packets successfully reserves the channel and sends a data packet prior to other SUs in access phase of the next idle slot. Obviously, this reserved transmission is without collision. The independent spectrum sensing, channel state decision and control packets reservation influence the performance of SUs. The proposed scheme is formulated with all above factors. Simulations which consist with the numerical results show the proposed access scheme achieve higher throughput than the existed scheme without channel reservation.  相似文献   

7.
混沌免疫算法求解认知无线电网络资源分配问题   总被引:1,自引:0,他引:1       下载免费PDF全文
柴争义  郑丽萍  朱思峰 《物理学报》2012,61(11):118801-118801
为了优化认知无线电网络中多用户正交频分复用子载波的资源分配, 将其转换为一个约束优化问题, 进而提出了一种基于混沌免疫优化的求解方法.给出了算法的实现过程和关键技术, 设计了适合算法求解的编码、 克隆、 重组、 变异算子.实验结果表明, 在满足认知用户速率、 所需误码率及干扰约束的条件下, 本文所用算法减小了整个系统所需的总发射功率, 同时收敛速度较快, 能够得到较优的子载波分配方案, 进而提高频谱利用效率.  相似文献   

8.
Artificial bee colony (ABC) algorithm builds on simulating the intelligent behavior of honey bees. It shows good performance in many applications. As standard ABC algorithm does not employ any crossover operator, the dispersal of good genetic information amongst the solutions is undermined. In this paper, the impact of crossover operators on the performance of ABC is studied. Eight crossover operators, representing all kinds of crossover operators, are used in this study. A trial and error method is used to detect the most proper crossover operator and crossover rate for incorporation into the ABC algorithm on mathematical functions as an initial attempt. The overall best configuration of ABC with crossover which has been identified is then applied to solve power allocation problem in cognitive multiple input and multiple output orthogonal frequency division multiplexing (MIMO-OFDM) cognitive system. Promising performances are obtained when compared with those from genetic algorithm, particle swarm optimization and differential evolution algorithm.  相似文献   

9.
In this paper, we study the cooperative communication of a cognitive underlay network by utilizing the diversity of multiple spectrum bands. In particular, we assume that the transmission power of the secondary user (SU) is subject to different joint constraints, such as peak interference power of the multiple primary users (PUs), peak transmission power of the SU, outage tolerate interference, and outage probability threshold. Accordingly, two power allocation schemes are considered on the basis of the minimum interference channel from the SU to the PU and the channel state information of the primary user link. Furthermore, the SU can select one of the three transmission modes following the channel state conditions, namely as cellular, device-to-device, or switching mode, to transmit the signal to the secondary user receiver. Given this setting, two power allocation schemes over a spectrum band selection strategy are derived. In addition, closed-form expressions for the outage probability of three modes are also obtained to evaluate the performance of the secondary network. Most importantly, a closed-form expression for the peak interference power level of the PU, which is considered as one of the most important parameters to control the SU’s transmission power, is derived by investigating the relation of two considered power allocation schemes in the practise. Finally, numerical examples show that the outage performance of secondary network in the switching mode outperforms the one of the cellular and device-to-device (D2D) mode for all considered power allocation schemes.  相似文献   

10.
俎云霄  周杰 《中国物理 B》2012,21(1):19501-019501
Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed, and a fitness function is provided. Simulations are conducted using the adaptive niche immune genetic algorithm, the simulated annealing algorithm, the quantum genetic algorithm and the simple genetic algorithm, respectively. The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation, and has quick convergence speed and strong global searching capability, which effectively reduces the system power consumption and bit error rate.  相似文献   

11.
Since cognitive radio (CR) networks could solve the spectrum scarcity problem, they have drawn much research in recent years. Artificial intelligence(AI) is introduced into CRs to learn from and adapt to their environment. Nonetheless, AI brings in a new kind of attacks specific to CR networks. The most powerful one is a self-propagating AI virus. And no spreading properties specific to this virus have been reported in the literature. To fill this research gap, we propose a virus spreading model of an AI virus by considering the characteristics of CR networks and the behavior of CR users. Several important observations are made from the simulation results based on the model. Firstly, the time taken to infect the whole network increases exponentially with the network size. Based on this result, CR network designers could calculate the optimal network size to slow down AI virus propagation rate. Secondly, the anti-virus performance of static networks to an AI virus is better than dynamic networks. Thirdly, if the CR devices with the highest degree are initially infected, the AI virus propagation rate will be increased substantially. Finally, it is also found that in the area with abundant spectrum resource, the AI virus propagation speed increases notably but the variability of the spectrum does not affect the propagation speed much.  相似文献   

12.
In this paper, we focus on the secrecy rate maximization problem in intelligent reflecting surface (IRS)-assisted cognitive radio (CR) networks. In order to improve the security, there is a common scheme to add artificial noise (AN) to the transmitted signal, which is also applied in this paper. Further, in CR networks, the secondary users always cannot obtain accurate channel state information (CSI) about the primary user and eavesdropper. By taking jointly design for the IRS phase shift matrix, the transmitted beamforming of the secondary base station (BS), and the covariance matrix of AN, our objective is to maximize the minimal secrecy rate of all secondary users. Due to the serious coupling among the designed variables, it cannot be solved by conventional methods. We propose an alternating optimization (AO) algorithm. In simulation results, we apply primary users and secondary users randomly distributed in the communication area, which numerically demonstrate the superiority of our proposed scheme.  相似文献   

13.
一种用于认知无线电资源分配的并行免疫遗传算法   总被引:1,自引:0,他引:1       下载免费PDF全文
周杰  俎云霄 《物理学报》2010,59(10):7508-7515
提出了用于认知无线电自适应调制和资源分配的并行免疫遗传算法,并对该算法、简单遗传算法和静态调制分配算法进行了仿真.仿真结果显示,该算法具有很强的全局搜索能力和较快的收敛速度,在误码率和功率受限条件下,该算法比简单遗传算法和静态调制方式的性能更好,同时明显降低了计算复杂度.  相似文献   

14.
In this paper, the performance of cognitive radio (CR) code division multiple access (CDMA) networks is analyzed in the presence of receive beamforming at the base stations (BSs). More precisely, we analyze, through simulations, the performance achievable by a CR user, with and without spectrum sensing, in a three-cell scenario. Uplink communications are considered. Three different schemes for spectrum sensing with beamforming are presented, together with a scheme without spectrum sensing. CR users belong to a cognitive radio network (CRN) which is coexisting with a primary radio network (PRN). Both the CRN and the PRN are CDMA based. The CRN is assumed to utilize beamforming for its CR users. Soft hand-off (HO) and power control are considered in both the CRN and the PRN. The impact of beamforming on the system performance is analyzed, considering various metrics. In particular, we evaluate the performance of the proposed systems in terms of outage probability, blocking probability, and average data rate of CR users. The results obtained clearly indicate that significant performance improvements can be obtained by CR users with the help of beamforming. The impact of several system parameters on the performance of the three considered spectrum sensing schemes with beamforming is analyzed. Our results, in terms of probability of outage, show that the relative improvement brought by the use of beamforming is higher in the absence of spectrum sensing (reduction of 80%) than in the presence of spectrum sensing (reduction of 42%).  相似文献   

15.
Cognitive radio (CR) is a wireless technology that is used to overcome the spectrum scarcity problem. CR includes several stages, spectrum sensing is the first stage in the CR cycle. Traditional spectrum sensing (SS) techniques have many challenges in the wideband spectrum. CR security is an important problem, since when an attacker from outside the network access the sensing information this produces an increase in sensing time and reduces the opportunities for exploiting vacant band. Compressive sensing (CS) is proposed to capture all the wideband spectrum at the same time to solve the challenges and improve the performance in the traditional techniques and then one of the traditional SS techniques are applied to the reconstructed signal for detection purpose. The sensing matrix is the core of CS must be designed in a way that produces a low reconstruction error with high compression. There are many types of sensing matrices, the chaotic matrix is the best type in terms of security, memory storage, and system performance. Few works in the literature use the chaotic matrix in CS based CR and these works have many challenges: they used sample distance in the chaotic map to generate a chaotic sequence which consumes high resources, they did not take into consideration the security in reporting channel, and they did not measure their works using real primary user (PU) signal of a practical application under fading channel and low SNR values. In this paper, we propose a chaotic CS based collaborative scenario to solve all challenges that have been presented. We proposed a chaotic matrix based on the Henon map and use the differential chaotic shift keying (DCSK) modulation to transmit the measurement vector through the reporting channel to increase the security and improve the performance under fading channel. The simulation results are tested based on a recorded real-TV signal as PU and Compressive Sampling Matching Pursuit (CoSaMP) recovery algorithm under AWGN and TDL-C fading channels in collaborative and non-collaborative scenarios. The performance of the proposed system has been measured using recovery error, mean square error (MSE), derived probability of detection (Pdrec), and sensitivity to initial values. To measure the improvement introduced by the proposed system, it is evaluated in comparison with selected chaotic and random matrices. The results show that the proposed system provides low recovery error, MSE, with high Pdrec, security, and compression under SNR equal to −30 dB in AWGN and TDL-C fading channels as compared to other matrices in the literature.  相似文献   

16.
Vehicular communication networks are emerging as a promising technology to provide high-quality internet service such as entertainment for road users via infrastructure-to-vehicle (I2V) communication, and to guarantee road users’ safety via vehicle-to-vehicle (V2V) communication. Some technical issues that impact the performance of these networks are the lack of or poor communication paths between vehicles, and the limitation of radio resources. Unmanned aerial vehicles (UAVs) as promising solutions for supporting vehicular networks could provide communication coverage in hazardous environments and areas with no capacities for installation or maintenance of ground base stations (BSs). Also, non-orthogonal multiple access (NOMA) methods can improve spectral and energy efficiency and thereby allow more users to be connected to the desired network. In this paper, exploring the NOMA, we develop a scheme for optimum resource allocation in presence of a UAV that supports vehicular communications. Resource allocation for this scenario is formulated as a mixed-integer non-linear programming (MINLP) problem. Due to the high complexity of such problems, we propose two low-complexity near-optimal methods. First, we apply difference-of-concave-functions (DC) approximations to solve the problem in an iterative process. Next, we use Stackelberg game-based method for efficient solving, and then, closed-form expressions of optimal power allocations using KKT-conditions are derived. Simulations illustrate the effectiveness of the proposed scheme along with the Stackelberg game-based method.  相似文献   

17.
Since the sensing power consumption of cooperative spectrum sensing (CSS) will decrease the throughput of secondary users (SU) in cognitive radio (CR), a joint optimal model of fair CSS and transmission is proposed in this paper, which can compensate the sensing overhead of cooperative SUs. The model uses the periodic listen-before-transmission method, where each SU is assigned a portion of channel bandwidth, when the primary user (PU) is estimated to be free by the coordinator. Then, a joint optimization problem of local sensing time, number of cooperative SUs, transmission bandwidth and power is formulated, which can compensate the sensing overhead of cooperative SUs appropriately through choosing suitable compensating parameter. The proposed optimization problem can be solved by the Polyblock algorithm. Simulation results show that compared with the traditional model, the total system throughput of the fairness cooperation model decreases slightly, but the total throughput of the cooperative SUs improves obviously.  相似文献   

18.
The massive growth in mobile users and wireless technologies has resulted in increased data traffic and created demand for additional radio spectrum. This growing demand for radio spectrum has resulted in spectrum congestion and mandated the need for coexistence between radar and interfering communication emitters. To address the aforementioned issues, it is critical to review existing policies and evaluate new technologies that can utilize spectrum in an efficient and intelligent manner. Cognitive radio and cognitive radar are two promising technologies that exploit spectrum using dynamic spectrum access techniques. Additionally, introducing the bio-inspired concept ‘metacognition’ in a cognitive process has shown to increase the effectiveness and robustness of the cognitive radio and cognitive radar system. Metacognition is a high-order thinking agent that monitors and regulates the cognition process through a feedback and control process called the perception–action cycle. Extensive research has been done in the field of spectrum sensing in cognitive radio and spectral coexistence between radar and communication systems. This paper provides a detailed classification of spectrum sensing schemes and explains how dynamic spectrum access strategies share the spectrum between radar and communication systems. In addition to this, the fundamentals of cognitive radio, its architecture, spectrum management framework, and metacognition concept in radar are discussed. Furthermore, this paper presents various research issues, challenges, and future research directions associated with spectrum sensing in cognitive radar and dynamic spectrum access strategies in cognitive radar.  相似文献   

19.
In this paper, we study the power allocation problem for an orthogonal frequency division multiplexing (OFDM)-based cognitive radio (CR) system. In a departure from the conventional power allocation schemes available in the literature for OFDM-based CR, we propose power allocation schemes that are augmented with spectral shaping. Active interference cancellation (AIC) is an effective spectral shaping technique for OFDM-based systems. Therefore, in particular, we propose AIC-based optimal and suboptimal power allocation schemes that aim to maximize the downlink transmission capacity of an OFDM-based CR system operating opportunistically within the licensed primary users (PUs) radio spectrum in an overlay approach. Since the CR transmitter may not have the perfect knowledge about the instantaneous channel quality between itself and the active PUs, the interference constraints imposed by each of the PUs are met in a statistical sense. We also study an optimal power allocation scheme that is augmented with raised cosine (RC) windowing-based spectral shaping. For a given power budget at the CR transmitter and the prescribed statistical interference constraints by the PUs, we demonstrate that although the on-the-run computational complexity of the proposed AIC-based optimal power allocation scheme is relatively higher, it may yield better transmission rate for the CR user compared to the RC windowing-based power allocation scheme. Further, the AIC-based suboptimal scheme has the least on-the-run computational complexity, and still may deliver performance that is comparable to that of the RC windowing-based power allocation scheme. The presented simulation results also show that both the AIC-based as well as the RC windowing-based power allocation schemes lead to significantly higher transmission rates for the CR user compared to the conventional (without any spectral shaping) optimal power allocation scheme.  相似文献   

20.
The heterogeneity nature of networks is the most eminent characteristic in 5G vehicular cognitive radio networks across complex radio environments. Since multiple communicating radios may be in motion at the same time in a vehicle. So, group mobility is the most prominent characteristic that requires to be a deep investigation. Therefore, different communication radios that are moving on a train/bus needed to select the networks simultaneously. Without considering the group mobility feature, there is a possibility that the same network may be selected by each moving node and cause congestion in a particular network. To overcome this problem, a novel network selection technique considering the group mobility feature is proposed to improve the throughput of the network. In this work, a 5G vehicular cognitive radio network scenario is also realized using USRP-2954 and LabVIEW communications system design suite testbed. The performance metrics like transmission delay, packet loss rate, reject rate and, channel utilization for vehicular nodes, are gained to analyze the proposed technique in vehicular cognitive radio networks environment. The proposed technique demonstrates a remarkable improvement in channel utilization for vehicular nodes and outperformed conventional schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号