共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerical analysis of pulsatile blood flow in healthy, stenosed, and stented carotid arteries is performed with the aim of identifying hemodynamic factors in the initiation, growth, and the potential of leading to severe occlusions of a diseased artery. The Immersed Finite Element Method is adopted for this study to conveniently incorporate various geometrical shapes of arteries without remeshing. Our computational results provide detailed quantitative analysis on the blood flow pattern, wall shear stress, particle residence time, and oscillatory shear index. The analysis of these parameters leads to a better understanding of blood clot formation and its localization in a stenosed and a stented carotid artery. A healthy artery is also studied to establish a baseline comparison. This analysis will assist in developing treatments for diseased arteries and novel stent designs to reduce restenosis. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
2.
M. HATAMI S. E. GHASEMI S. A. R. SAHEBI S. MOSAYEBIDORCHEH D. D. GANJI J. HATAMI 《应用数学和力学(英文版)》2015,36(11):1449-1458
In this paper, a non-Newtonian third-grade blood in coronary and femoral arteries is simulated analytically and numerically. The blood is considered as the thirdgrade non-Newtonian fluid under the periodic body acceleration motion and the pulsatile pressure gradient. The hybrid multi-step differential transformation method (Hybrid-MsDTM) and the Crank-Nicholson method (CNM) are used to solve the partial differential equation (PDE), and a good agreement between them is observed in the results. The effects of the some physical parameters such as the amplitude, the lead angle, and the body acceleration frequency on the velocity and shear stress profiles are considered. The results show that increasing the amplitude, Ag, and reducing the lead angle of body acceleration, φ, make higher velocity profiles on the center line of both arteries. Also, the maximum wall shear stress increases when Ag increases. 相似文献
3.
Kiang Fu-ru 《应用数学和力学(英文版)》1980,1(1):35-53
In this paper, problems of bending of thin plates under the combined action of lateral loading and in-plane forces are studied by means of perturbation method. 相似文献
4.
To get a clear picture of the pulsatile nature of blood flow and its role in the pathogenesis of atherosclerosis, a comparative study of blood flow in large arteries is carried out using the two widely used models, McDonald's and Burton's models, for the pressure gradient. For both models, the blood velocity in the lumen is obtained analytically. Elaborate investigations on the wall shear stress (WSS) and oscillatory shear index (OSI) are carried out. The results are in good agreement with the available data in the literature. The superiority of McDonald's model in capturing the pulsatile nature of blood flow, especially the OSI, is highlighted. The present investigation supports the hypothesis that not only WSS but also OSI are the essential features determining the pathogenesis of atherosclerosis. Finally, by reviewing the limitations of the present investigation, the possibility of improvement is explored. 相似文献
5.
IntroductionAnelastomer(compressibleorincompressible)betweentwoparallelrigidsurfacesisakindofoftenworkinengineeringandtechnology.Thestudyforitsdeformationundertheroleofforcebeganmanyyearsago.Targetstudied—bondedelasticbodyisdividedintoacircularcylindri… 相似文献
6.
Prashanta Kumar Mandal 《International Journal of Non》2005,40(1):151-164
The problem of non-Newtonian and nonlinear blood flow through a stenosed artery is solved numerically where the non-Newtonian rheology of the flowing blood is characterised by the generalised Power-law model. An improved shape of the time-variant stenosis present in the tapered arterial lumen is given mathematically in order to update resemblance to the in vivo situation. The vascular wall deformability is taken to be elastic (moving wall), however a comparison has been made with nonlinear visco-elastic wall motion. Finite difference scheme has been used to solve the unsteady nonlinear Navier-Stokes equations in cylindrical coordinates system governing flow assuming axial symmetry under laminar flow condition so that the problem effectively becomes two-dimensional. The present analytical treatment bears the potential to calculate the rate of flow, the resistive impedance and the wall shear stress with minor significance of computational complexity by exploiting the appropriate physically realistic prescribed conditions. The model is also employed to study the effects of the taper angle, wall deformation, severity of the stenosis within its fixed length, steeper stenosis of the same severity, nonlinearity and non-Newtonian rheology of the flowing blood on the flow field. An extensive quantitative analysis is performed through numerical computations of the desired quantities having physiological relevance through their graphical representations so as to validate the applicability of the present model. 相似文献
7.
An analysis model of pulsatile blood flow in arteries 总被引:3,自引:0,他引:3
IntroductionTheperiodicallypulsatilebloodflowinthearterycausesthecircumferentialandaxialmotionoftheelasticbloodvesselandinturntheoscillationofthevesselaffectsthatofthebloodflow .Womersley[1]resolvedsuccessfullythisfluid_solidcouplingproblembysolvingbothlinearNavier_Stokesequationsandthemotionequationsofthethin_walledelastictubeandgainedtheexpressionsofthebloodflowvelocitiesandthevasculardisplacements.Histheoryhasbeenthebasisforthequantitativeanalysisoftherelationshipofthearterialstructureandi… 相似文献
8.
AnilKumar C.L.Varshney G.C.Sharma 《应用数学和力学(英文版)》2005,26(1):63-72
IntroductionThehemodynamicsofflowsthroughbloodvesselsisofgreatinterest,becausethesevesselspresentasubstantialhealthriskandareamajorcauseofmortalityandmorbidityintheindustrializedworld .Researchpapersonthebloodflowhaveappearedbutmostofthemhaveneglectedtheporosityeffectsduetovesselwalls.Inthisstudyweareinterestedintheflowthroughabloodvesseltakingintoaccounttheporosityeffectsofthevessels.Fluidflowthroughaporousmediumisoffundamentalimportancetowiderangeofdisciplinesinthevariousbranchesofnaturalsci… 相似文献
9.
The effects of the renal artery stenosis(RAS) on the blood flow and vesselwalls are investigated.The pulsatile blood flow through an anatomically realistic model ofthe abdominal aorta and renal arteries reconstructed from CT-scan images is simulated,which incorporates the fluid-structure interaction(FSI).In addition to the investigationof the RAS effects on the wall shear stress and the displacement of the vessel wall,it isdetermined that the RAS leads to decrease in the renal mass flow.This may cause theactivation of the renin-angiotension system and results in severe hypertension. 相似文献
10.
A transient haemodynamic study in a model cavopulmonary vascular system has been carried out for a typical range of parameters using a finite element‐based Navier–Stokes solver. The focus of this study is to investigate the influence of non‐Newtonian behaviour of the blood on the haemodynamic quantities, such as wall shear stress (WSS) and flow pattern. The computational fluid dynamics (CFD) model is based on an artificial compressibility characteristic‐based split (AC‐CBS) scheme, which has been adopted to solve the Navier–Stokes equations in space–time domain. A power law model has been implemented to characterize the shear thinning nature of the blood depending on the local strain rate. Using the computational model, numerical investigations have been performed for Newtonian and non‐Newtonian flows for different frequencies and input pulse forms. The haemodynamic quantities observed in total cavopulmonary connection (TCPC) for the above conditions suggest that there are considerable differences in average (about 25–40%) and peak (about 50%) WSS distributions, when the non‐Newtonian behaviour of the blood is taken into account. The lower WSS levels observed for non‐Newtonian cases point to the higher risk of lesion formation, especially at higher pulsation frequencies. A realistic pulse form is relatively safer than a sinusoidal pulse as it has more energy distributed in the higher harmonics, which results in higher average WSS values. The present study highlights the importance of including non‐Newtonian shear thinning behaviour for modelling blood flow in the vicinity of repaired arterial connections. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
11.
非牛顿流体在渐变管中压力和剪切应力的二次摄动解 总被引:1,自引:0,他引:1
本文利用双摄动方法求解缓慢变化管道中Johnson-Segalman(J-S)流体流动的渐近解.将管道的扩张(或收缩)角度和粘弹性参数分别作为双摄动的参数,由流函数和涡量函数的形式,推导出压力和壁面剪切应力的渐近解.在此基础上,分析了管道角度,粘弹性参数和雷诺数等参数对压力以及剪切力影响.主要结论如下:(1) 管道扩张角度增加时,流向同一位置处径向压力以及壁面剪切应力随扩张角度减小;(2) 在同一扩张管道中,径向压力随着流向位移减小,收缩管与之相反;(3) 扩张角度与雷诺数对流场起主导作用,粘弹性系数起次要作用. 相似文献
12.
D.S. Sankar 《International Journal of Non》2008,43(7):622-631
Blood flow through a catheterized artery is analyzed, assuming the flow is steady and blood is treated as a two-fluid model with the suspension of all the erythrocytes in the core region as a Casson fluid and the plasma in the peripheral region as a Newtonian fluid. The expressions for velocity, flow rate, wall shear stress and frictional resistance are obtained. The variations of these flow quantities with yield stress, catheter radius ratio and peripheral layer thickness are discussed. It is noticed that the velocity and flow rate decrease while the wall shear stress and resistance to flow increase when the yield stress or the catheter radius ratio increases while all the other parameters were held fixed. It is found that the velocity and flow rate increase while the wall shear stress and frictional resistance decrease with the increase of the peripheral layer thickness. The estimates of the increase in the frictional resistance are significantly very small for the present two-fluid model than those of the single-fluid Casson model. 相似文献
13.
D.S. Sankar 《International Journal of Non》2011,46(1):296-305
The pulsatile flow of a two-phase model for blood flow through axisymmetric and asymmetric stenosed narrow arteries is analyzed, treating blood as a two-phase model with the suspension of all the erythrocytes in the core region as the Herschel-Bulkley material and plasma in the peripheral layer as the Newtonian fluid. The perturbation method is applied to solve the resulting non-linear implicit system of partial differential equations. The expressions for various flow quantities are obtained. It is found that the pressure drop, plug core radius, wall shear stress increase as the yield stress or stenosis height increases. It is noted that the velocity increases, longitudinal impedance decreases as the amplitude increases. For asymmetric stenosis, the wall shear stress increases non-linearly with the increase of the axial distance. The estimates of the increase in longitudinal impedance to flow of the two-phase Herschel-Bulkley material are significantly lower than those of the single-phase Herschel-Bulkley material. The results show the advantages of two-phase flow over single-phase flow in small diameter arteries with stenosis. 相似文献
14.
The paper studies the problem of fluid flow and fluid shear stress in canaliculi when the osteon is subject to external mechanical loading and blood pressure oscillation. The single osteon is modeled as a saturated poroelastic cylinder. Solid skeleton is regarded as a poroelastic transversely isotropic material. To get near-realistic results, both the interstitial fluid and the solid matrix are regarded as compressible. Blood pressure oscillation in the Haverian canal is considered. Using the poroelasticity theory, an analytical solution of the pore fluid pressure is obtained. Assuming the fluid in canaliculi is incompressible, analytical solutions of fluid flow velocity and fluid shear stress with the Navier-Stokes equations of incompressible fluid are obtained. The effect of various parameters on the fluid flow velocity and fluid shear stress is studied. 相似文献
15.
D.S. Sankar 《International Journal of Non》2009,44(4):337-351
The pulsatile flow of blood through a catheterized artery is analyzed, assuming the blood as a two-fluid model with the suspension of all the erythrocytes in the core region as a Casson fluid and the peripheral region of plasma as a Newtonian fluid. The resulting non-linear implicit system of partial differential equations is solved using perturbation method. The expressions for shear stress, velocity, flow rate, wall shear stress and longitudinal impedance are obtained. The variations of these flow quantities with yield stress, catheter radius ratio, amplitude, pulsatile Reynolds number ratio and peripheral layer thickness are discussed. It is observed that the velocity distribution and flow rate decrease, while, the wall shear, width of the plug flow region and longitudinal impedance increase when the yield stress increases. It is also found that the velocity increases, but, the longitudinal impedance decreases when the thickness of the peripheral layer increases. The wall shear stress decreases non-linearly, while, the longitudinal impedance increases non-linearly when the catheter radius ratio increases. The estimates of the increase in the longitudinal impedance are considerably lower for the present two-fluid model than those of the single-fluid model. 相似文献
16.
Fan He 《International Journal of Computational Fluid Dynamics》2013,27(3):164-172
In this paper, a fluid–wall interaction model, called the elastic tube model, is introduced to investigate wave propagation in an elastic tube and the effects of different parameters. The unsteady flow was assumed to be laminar, Newtonian and incompressible, and the vessel wall to be linear-elastic, isotropic and incompressible. A fluid–wall interaction scheme is constructed using a finite element method. The results demonstrate that the elastic tube plays an important role in wave propagation. It is shown that there is a time delay between the velocity waveforms at two different locations and that the peak velocity increases while the low velocity decreases in the elastic tube model, contrary to the rigid tube model where velocity waveforms overlap each other. Compared with the elastic tube model, the increase of the wall thickness makes wave propagation faster and the time delay cannot be observed clearly, however, the velocity amplitude is reduced slightly due to the decrease of the internal radius. The fluid–wall interaction model simulates wave propagation successfully and can be extended to study other mechanical properties considering complicated geometrical and material factors. 相似文献
17.
The contact interaction of an elastic punch of arbitrary cross-section and an elastic semi-space with initial (residual) stresses
is studied. A general method to solve the problem is proposed. It allows solving contact problems for bodies with initial
(residual) stresses when the solution of the corresponding elastic problem is known
__________
Translated from Prikladnaya Mekhanika, Vol. 43, No. 12, pp. 28–40, December 2007. 相似文献
18.
M.S.N. Oliveira F.T. Pinho R.J. Poole P.J. Oliveira M.A. Alves 《ournal of non Newtonian Fluid Mechanics》2009
The flow of a viscoelastic fluid through a microfluidic flow-focusing device is investigated numerically with a finite-volume code using the upper-convected Maxwell (UCM) and Phan-Thien–Tanner (PTT) models. The conceived device is shaped much like a conventional planar “cross-slot” except for comprising three inlets and one exit arm. Strong viscoelastic effects are observed as a consequence of the high deformation rates. In fact, purely elastic instabilities that are entirely absent in the corresponding Newtonian fluid flow are seen to occur as the Deborah number (De) is increased above a critical threshold. From two-dimensional numerical simulations we are able to distinguish two types of instability, one in which the flow becomes asymmetric but remains steady, and a subsequent instability at higher De in which the flow becomes unsteady, oscillating in time. For the UCM model, the effects of the geometric parameters of the device (e.g. the relative width of the entrance branches, WR) and of the ratio of inlet average velocities (VR) on the onset of asymmetry are systematically examined. We observe that for high velocity ratios, the critical Deborah number is independent of VR (e.g. Dec ≈ 0.33 for WR = 1), but depends non-monotonically on the relative width of the entrance branches. Using the PTT model we are able to demonstrate that the extensional viscosity and the corresponding very large stresses are decisive for the onset of the steady-flow asymmetry. 相似文献
19.
Numerical analysis of the free convection coupled heat and mass transfer is presented for non-Newtonian power-law fluids with
the yield stress flowing over a two-dimensional or axisymmetric body of an arbitrary shape in a fluid-saturated porous medium.
The governing boundary layer equations and boundary conditions are cast into a dimensionless form by the similarity transformation.
The resulting system of equations is solved by a finite difference method. The parameters studied are the rheological constants,
the buoyancy ratio, and the Lewis number. Representative velocity, temperature, and concentration profiles are presented and
discussed. It is found that the results depend strongly on the values of the yield stress parameter and the power-law index
of the non-Newtonian fluid. 相似文献
20.
Numerical analysis of the free convection coupled heat and mass transfer is presented for non-Newtonian power-law fluids with the yield stress flowing over a two-dimensional or axisymmetric body of an arbitrary shape in a fluid-saturated porous medium. The governing boundary layer equations and boundary conditions are cast into a dimensionless form by the similarity transformation. The resulting system of equations is solved by a finite difference method. The parameters studied are the rheological constants, the buoyancy ratio, and the Lewis number. Representative velocity, temperature, and concentration profiles are presented and discussed. It is found that the results depend strongly on the values of the yield stress parameter and the power-law index of the non-Newtonian fluid. 相似文献