首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adsorption of proteins onto film surfaces built up layer by layer from oppositely charged polyelectrolytes is a complex phenomenon, governed by electrostatic forces, hydrogen bonds, and hydrophobic interactions. The amounts of the interacting charges, however, both in polyelectrolytes and in proteins adsorbed on such films are a function of the pH of the solution. In addition, the number and the accessibility of free charges in proteins depend on the secondary structure of the protein. The subtle interplay of all these factors determines the adsorption of the proteins onto the polyelectrolyte film surfaces. We investigated the effect of these parameters for polyelectrolyte films built up from weak "protein-like" polyelectrolytes (i.e., polypeptides), poly(L-lysine) (PLL), and poly(glutamic acid) (PGA) and for the adsorption of human serum albumin (HSA) onto these films in the pH range 3.0-10.5. It was found that the buildup of the polyelectrolyte films is not a simple function of the pure charges of the individual polyelectrolytes, as estimated from their respective pKa values. The adsorption of HSA onto (PLL/PGA)n films depended strongly on the polyelectrolyte terminating the film. For PLL-terminated polyelectrolyte films, at low pH, repulsion, as expected, is limiting the adsorption of HSA (having net positive charge below pH 4.6) since PLL is also positively charged here. At high pH values, an unexpected HSA uptake was found on the PGA-ending films, even when both PGA and HSA were negatively charged. It is suggested that the higher surface rugosity and the decrease of the alpha-helix content at basic pH values (making accessible certain charged groups of the protein for interactions with the polyelectrolyte film) could explain this behavior.  相似文献   

2.
Bovine serum albumin (BSA) hollow microcapsules were fabricated through glutaraldehyde (GA) mediated covalent layer-by-layer assembly. The GA cross-linking of the adsorbed BSA on the colloidal particles enabled their surfaces to be covered by reactive aldehyde groups, which reacted with BSA molecules to result in another covalently linked layer. Repeating of this cycle could then yield particles coated with BSA multilayers. Hollow microcapsules well dispersed in water were obtained after core removal. The good integrity and morphology of the BSA capsules were confirmed and characterized by confocal laser scanning microscopy, scanning electron microscopy and scanning force microscopy. The obtained BSA microcapsules possess reversible pH response, i.e., the capsules are permeable to macromolecules below pH 4 or above pH 10, while impermeable in between. The mechanisms of permeability transition were discussed. Using this property, dextran, with a molecular weight of ~155 kDa, was successfully loaded.  相似文献   

3.
细胞支架作为组织工程的组成部分为细胞生长提供了最佳微环境 ,并对细胞生长与功能进行控制 .由于细胞对支架表面的生物识别是细胞附着、生长和增殖的基本前提 ,所以对材料表面的功能化是一个重要的课题 [1,2 ] . Shoichet等 [3 ] 通过化学反应或等离子体处理的方法 ,将蛋白质引入到材料表面而使其功能化 .基片在两种带有相反电荷的聚电解质溶液中交替吸附 ,其表面形成致密有序的超薄自组装膜 ,这种层 -层自组装技术不仅制备方法简单 ,无需特殊的设备 ,而且对膜组成和厚度能随意调控 ,以水为介质 ,对环境友好 [4~ 6] ,无疑是一项重要的表…  相似文献   

4.
The interaction of biocompatible polyelectrolytes (chargeable poly(amino acids)) with oxidized starch microgel particles has been studied. The aim was to form a polyelectrolyte complex layer around the outer shell of microgel particles filled with functional ingredients to slow down the release of the ingredients from the gel and make this process less sensitive to salt. First, the distribution of positively charged poly(l-lysine) (PLL) of two different molecular weights ("small", 15-30 kDa, and "large", 30-70 kDa) in the negatively charged gel particles was measured. The small PLL distributes homogeneously throughout the gel particles, but the large PLL forms a shell; i.e., its concentration at the outer layer of the particles was found to be much higher than in their core. This shell formation does not occur at a relatively high salt concentration (0.07 M). The large PLL was selected for further study. It was found that upon addition of PLL to lysozyme-loaded gel particles the protein is exchanged by PLL. The exchange rate increases with increasing pH, in line with the increasing electrostatic attraction between the gel and the polyelectrolyte. Therefore, it was decided to use also a negatively charged poly(amino acid), poly(L-glutamic acid) (PGA), to form together with PLL a stable polyelectrolyte complex shell around the gel particles. This approach turned out to be successful, and the PLL/PGA complex layer effectively slows down the release of lysozyme from the microgel particles at 0.05 M salt. In addition, it was found that the PLL/PGA layer protects the gel particle from degradation by α-amylase.  相似文献   

5.
Layer-by-layer (LBL) polyelectrolyte films were constructed from poly(L-glutamic acid) (PGA) and poly(L-aspartic acid) (PAA) as polyanions, and from poly(L-lysine) (PLL) as the polycation. The terminating layer of the films was always PLL. According to attenuated total reflection Fourier transform infrared measurements, the PGA/PLL and PAA/PLL films, despite their chemical similarity, had largely different secondary structures. Extended beta-sheets dominated the PGA/PLL films, while alpha-helices and intramolecular beta-sheets dominated the PAA/PLL films. The secondary structure of the polyelectrolyte film affected the adsorption of human serum albumin (HSA) as well. HSA preserved its native secondary structure on the PGA/PLL film, but it became largely deformed on PAA/PLL films. Both PGA and PAA were able to extrude to a certain extent the other polyanion from the films, but the structural consequences were different. Adding PAA to a (PGA/PLL)5-PGA film resulted in a simple exchange and incorporation: PGA/PLL and PAA/PLL complexes coexisted with their unaltered secondary structures in the mixed film. The incorporation of PGA into a (PAA/PLL)5-PAA film was up to 50% and caused additional beta-structure increase in the secondary structure of the film. The proportions of the two polyanions were roughly the same on the surfaces and in the interiors of the films, indicating practically free diffusion for both polyanions. The abundance of PAA/PLL and PGA/PLL domains on the film surfaces was monitored by the analysis of the amide I region of the infrared spectrum of a reporter molecule, HSA, adsorbed onto the three-component polyelectrolyte films.  相似文献   

6.
The buildup of poly(L-glutamic acid) (PGA) and poly(L-lysine) (PLL) multilayers on beta-FeOOH colloidal particles was investigated by means of electro-optics and electrophoresis. The films were built at different (acidic) pH in the absence of salt. We found that the thickness of the film grows linearly when the fully charged PLL (at pH 5.5) is combined with almost fully charged PGA (at pH 6.5), with a thickness of about 2 nm per single layer. When the fully charged PLL is combined with weakly charged PGA (at pH 4.5), the film thickness increases exponentially with the number of deposited layers. The thickness of the exponentially growing film increases to 300 nm after deposition of 16 layers. The exponential film growth is attributed to the ability of the PLL to diffuse "in" and "out" of the film bulk at each deposition step. The variation in the electrical polarizability of the film-coated particles was also monitored as a function of the number of adsorbed layers. The result reveals that the PLL chains, which can diffuse into the film bulk, have no measurable contribution to the electro-optical effect of the films terminated with PLL. It is only due to the polarization of counterions of the PLL adsorbed on the film surface.  相似文献   

7.
Colloidosome capsules possess the potential for the encapsulation and release of molecular and macromolecular cargos. However, the stabilization of the colloidosome shell usually requires an additional covalent crosslinking which irreversibly seals the capsules, and greatly limits their applications in large‐cargos release. Herein we report nanoscaled colloidosomes designed by the electrostatic assembly of organosilica nanoparticles (NPs) with oppositely charged surfaces (rather than covalent bonds), arising from different contents of a bridged nitrophenylene‐alkoxysilane [NB; 3‐nitro‐N‐(3‐(triethoxysilyl)propyl)‐4‐(((3‐(triethoxysilyl)propyl)‐amino)methyl)benzamid] derivative in the silica. The surface charge of the positively charged NPs was reversed by light irradiation because of a photoreaction in the NB moieties, which impacted the electrostatic interactions between NPs and disassembled the colloidosome nanosystems. This design was successfully applied for the encapsulation and light‐triggered release of cargos.  相似文献   

8.
Single‐strand oligo‐DNA‐modified Au nanoparticles (AuNPs) undergo aggregation in the presence of poly(L ‐lysine) (PLL), which is attributed to the interactions between the oligo‐DNA and PLL. These interactions between the oligo‐DNA and PLL were identified to be electrostatic when the lysine residues of PLL were positively charged and to be hydrogen bonding when the residues were deprotonated. The aggregation was promoted with an increase in the pH value at a pH level lower than the pKa value of PLL (pKa≈10.0) due to the gradual deprotonation of the lysine residues and thus suppressed electrostatic interactions between the positively charged lysine residues of PLL and the negatively charged backbone phosphate groups of the oligo‐DNA. At pH levels higher than the pKa value of PLL, the aggregation was identified to be dominated by the hydrogen bonds between the bases of the oligo‐DNA and the deprotonated lysine residues of PLL. This study prompts the possibility that the spectral, and thus color, change of AuNPs upon aggregation can be used as a probe to follow the interactions between oligo‐DNA and polypeptides.  相似文献   

9.
熊乐乐  李瑞军  季一兵 《色谱》2017,35(7):712-718
制备了粒径为15 nm的金纳米粒子(GNPs)并将其修饰到氨基衍生化的硅胶整体柱内,通过化学键合法将牛血清白蛋白(BSA)固载到GNPs的表面作为手性固定相。通过透射电子显微镜、扫描电子显微镜等方法进行表征,结果表明,GNPs分散性良好,并被成功地修饰到毛细管柱内,含量高达17.18%。优化了BSA手性柱的制备条件,最终确定了体积分数为10%的3-氨丙基三乙氧基硅烷(APTES)和15 g/L BSA为最佳反应条件。在毛细管电色谱分离模式下,对缓冲液pH值、电压等分离条件进行了考察,最终选择了10 mmol/L pH 7.4的磷酸缓冲液和15 kV运行电压作为最佳分离条件。手性柱对3种手性化合物(色氨酸、阿替洛尔和麻黄碱)有拆分效果,对色氨酸能实现基线分离。与物理吸附法相比,化学键合法制备的手性柱拆分效果好,分析物无需柱前衍生化,且色谱柱稳定性良好。该文的制备方法也为其他类型手性选择剂的引入提供了良好的思路。  相似文献   

10.
UV resonance Raman (UVR) spectroscopy was used to examine the solution conformation of poly-l-lysine (PLL) and poly-l-glutamic acid (PGA) in their non-alpha-helical states. UVR measurements indicate that PLL (at pH = 2) and PGA (at pH = 9) exist mainly in a mixture of polyproline II (PPII) and a novel left-handed 2.5(1)-helical conformation, which is an extended beta-strand-like conformation with Psi approximately +170 degrees and Phi approximately -130 degrees . Both of these conformations are highly exposed to water. The energies of these conformations are very similar. We see no evidence of any disordered "random coil" states. In addition, we find that a PLL and PGA mixture at neutral pH is approximately 60% beta-sheet and contains PPII and extended 2.5(1)-helix conformations. The beta-sheet conformation shows little evidence of amide backbone hydrogen bonding to water. We also developed a method to estimate the distribution of Psi Ramachandran angles for these conformations, which we used to estimate a Psi Ramachandran angle energy landscape. We believe that these are the first experimental studies to give direct information on protein and peptide energy landscapes.  相似文献   

11.
吴飞  朱进  谭克俊 《应用化学》2012,29(8):969-973
研究了牛血清白蛋白(BSA)与全氟辛烷磺酸(PFOS)相互作用的共振光散射(RLS)光谱,建立了PFOS的共振光散射分析方法。 在pH值为4.1的BR缓冲溶液中,全氟辛烷磺酸根阴离子与质子化的BSA通过静电引力和疏水作用形成离子缔合物,引起共振光散射强度(IRLS)显著增强,最大散射波长位于285.0 nm处,增强的散射信号强度与PFOS浓度在0.2~25.0 μmol/L范围内呈线性关系,据此建立了测定PFOS的光散射分析方法,检出限为20.0 nmol/L。 讨论了体系的最佳反应条件及外来物质的干扰,并探讨了反应机理。 建立的共振光散射法用于环境水样中PFOS的测定,RSD≤4.4%。  相似文献   

12.
Penicillin G acylase (PGA) from Escherichia coli was immobilized on vinyl sulfone (VS) agarose. The immobilization of the enzyme failed at all pH values using 50 mM of buffer, while the progressive increase of ionic strength permitted its rapid immobilization under all studied pH values. This suggests that the moderate hydrophobicity of VS groups is enough to transform the VS-agarose in a heterofunctional support, that is, a support bearing hydrophobic features (able to adsorb the proteins) and chemical reactivity (able to give covalent bonds). Once PGA was immobilized on this support, the PGA immobilization on VS-agarose was optimized with the purpose of obtaining a stable and active biocatalyst, optimizing the immobilization, incubation and blocking steps characteristics of this immobilization protocol. Optimal conditions were immobilization in 1 M of sodium sulfate at pH 7.0, incubation at pH 10.0 for 3 h in the presence of glycerol and phenyl acetic acid, and final blocking with glycine or ethanolamine. This produced biocatalysts with stabilities similar to that of the glyoxyl-PGA (the most stable biocatalyst of this enzyme described in literature), although presenting just over 55% of the initially offered enzyme activity versus the 80% that is recovered using the glyoxyl-PGA. This heterofuncionality of agarose VS beads opens new possibilities for enzyme immobilization on this support.  相似文献   

13.
A reversible drug delivery system based on spontaneous deposition of a model protein into preformed microcapsules has been demonstrated for protein delivery applications. Layer-by-Layer assembly of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) onto polystyrene sulfonate (PSS) doped CaCO3 particles, followed by core removal yielded intact hollow microcapsules having a unique property to induce spontaneous deposition of bovine serum albumin (BSA) at pH below its isoelectric point of 4.8, where it was positively charged. These capsules showed reversible pH dependent open and closed states to fluorescence labeled dextran (FITC-Dextran) and BSA (FITC-BSA). The loading capacity of BSA increased from 9.1 × 107 to 2.03 × 108 molecules per capsule with decrease in pH from 4.5 to 3. The loading of BSA-FITC was observed by confocal laser scanning microscopy (CLSM), which showed homogeneous distribution of protein inside the capsule. Efficient loading of BSA was further confirmed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The interior capsule concentration was as high as 209 times the feeding concentration when the feeding concentration was increased from 1 to 10 mg/ml. The deposition was initially controlled by spontaneous loading mechanism at lower BSA concentration followed by diffusion controlled loading at higher concentration; which decreased the loading efficiency from 35% to 7%. Circular dichroism (CD) measurements and Fourier transform infrared spectroscopy (FTIR) confirmed that there was no significant change in conformation of released BSA in comparison with native BSA. The release was initially burst in the first 0.5 h and sustained up to 5 h. The hollow capsules were found to be biocompatible with mouse embryonic fibroblast (MEF) cells during in vitro cell culture studies. Thus these pH sensitive polyelectrolyte microcapsules may offer a promising delivery system for water soluble proteins and peptides.  相似文献   

14.
The interaction of clarithromycin (CAM) with bovine serum albumin (BSA) was investigated in pH 4.5 - 8.0 phosphate buffer solutions in which three irreversible reduction waves P(1), P(2) and P(3) of CAM appeared on linear-sweep voltammetry on a static dropping mercury working electrode. In the acidic media, with the addition of BSA into the CAM solution, a new electrochemically active complex was formed and there was interaction between the carbonyl group C=O in the C-9 position of CAM and BSA. It was found that electrostatic and hydrophobic forces played an important role in the binding reaction. However, new electrochemically non-active complexes were formed at physiological pH condition. The study showed that the formation constant and formation ratio of the interaction between CAM and BSA were 1.51 x 10(12) and 3:1 for P(2) wave, and 4.53 x 10(5) and 1:1 for P(3) wave, respectively. The ion strength enhanced the hydrophobic interaction between CAM and BSA.  相似文献   

15.
Bovine serum albumin (BSA) is a soft globular protein that undergoes conformational changes through several identified transition steps in the pH range 2–13.5. The ability to change conformation makes BSA capable of complexing different ligands from fatty acids to cations or drugs and carries them in the bloodstream. Microcalorimetric titration of BSA with NaOH solution was performed to measure the enthalpy of conformational changes. Two exothermic enthalpy changes were found in the course of the titration between pH 3 and 9.5, which can be identified with the E–F, and the F–N transitions. The enthalpy change at pH 3.5 (transition from the E to the F form of BSA, folding of intra-domain helices in domain I) is independent of the protein concentration. The second transition (F–N, folding of domain III) was observed at pH 4.8 for the 0.1% BSA solution, but it shifted to higher pH values as the protein concentration increased to 0.2% and 0.3%. The tightening of the protein structure with increasing pH was verified measuring intrinsic fluorescence of tryptophan residues. At even higher pH value, pH 10.5, fluorescence measurements revealed protein expansion. The BSA conformational changes were also measured by dynamic light scattering. The hydrodynamic diameter was smaller at the i.e.p. of BSA (5–7 nm at pH ~5) and larger at the two ends of the pH range (17.5 nm at pH 2 and 8.3 nm at pH 10).  相似文献   

16.
Polyelectrolyte multilayers (PEM) of poly(L-glutamic acid) (PGA) and poly(L-lysine) (PLL) with an initial layer of polyethyleneimine (PEI) were built on silica and titanium surfaces using the layer-by-layer (LbL) technique. The stability of the film during drying/rewetting, temperature cycles, and pH shifts was studied in situ by means of ellipsometry. The film thickness was found to decrease significantly (approximately 70%) upon drying, but the original film thickness was regained upon rewetting, and the buildup could be continued. The thickness in the dry state was found to be extremely sensitive to ambient humidity, needing several hours to equilibrate. Changes in temperature and pH were also found to influence the multilayer thickness, leading to swelling and deswelling of as much as 8% and 10-20% respectively. The film does not necessarily regain its original thickness as the pH is shifted back, but instead shows clear signs of hysteresis.  相似文献   

17.
Immobilized Aspergillus oryzae protease (AOP) catalyzed the formation of peptide bonds between TV-protected amino acids and amino acid esters or amides in ethyl acetate. The influences of pH and reaction time on the coupling of Boc-L -Tyr and Gly-NH2 were studied. The optimal reaction condition for this enzyme catalyzed synthesis of Boc-L -Phe-Gly-NH2 (98.66%) was at pH 5.5 and a duration of 48 hours.  相似文献   

18.
When nanoparticles (NPs) are introduced to a biological fluid, different proteins (and other biomolecules) rapidly get adsorbed onto their surface, forming a protein corona capable of giving to the NPs a new “identity” and determine their biological fate. Protein–nanoparticle conjugation can be used in order to promote specific interactions between living systems and nanocarriers. Non‐covalent conjugates are less stable and more susceptible to desorption in biological media, which makes the development of engineered nanoparticle surfaces by covalent attachment an interesting topic. In this work, the surface of poly(globalide‐co‐ε‐caprolactone) (PGlCL) nanoparticles containing double bonds in the main polymer chain is covalently functionalized with bovine serum albumin (BSA) by thiol‐ene chemistry, producing conjugates which are resistant to dissociation. The successful formation of the covalent conjugates is confirmed by flow cytometry (FC) and fluorescence correlation spectroscopy (FCS). Transmission electron microscopy (TEM) allows the visualization of the conjugate formation, and the presence of a protein layer surrounding the NPs can be observed. After conjugation with BSA, NPs present reduced cell uptake by HeLa and macrophage RAW264.7 cells, in comparison to uncoated NP. These results demonstrate that it is possible to produce stable conjugates by covalently binding BSA to PGlCL NP through thiol‐ene reaction.  相似文献   

19.
Herein we report the preparation of layer-by-layer (LbL) assembled, biodegradable, covalently stabilized capsules with tunable degradation properties. Poly(L-glutamic acid) modified with alkyne moieties (PGA(Alk)) was alternately assembled with poly(N-vinyl pyrrolidone) (PVPON) on silica particles via hydrogen-bonding. The films were cross-linked with a bis-azide linker, followed by removal of the sacrificial template and PVPON at physiological pH through hydrogen bond disruption, yielding one-component PGA(Alk) capsules. To control the kinetics and location of capsule degradation, a number of approaches were investigated. First, a degradable bis-azide cross-linker was incorporated into the inherently enzymatically degradable capsules. Second, we assembled low-fouling capsules composed of nondegradable poly(N-vinyl pyrrolidone-ran-propargyl acrylate) (PVPON(Alk)) via hydrogen bonding with poly(methacrylic acid) (PMA) and combined this with the aforementioned system (PGA(Alk)/PVPON) to produce stratified hybrid capsules. The degradation profiles of these stratified capsules can be closely controlled by the number as well as the position of nondegradable barrier layers in the systems. The facile tailoring of the degradation kinetics makes this stratified LbL approach promising for the design of tailored drug-delivery vehicles.  相似文献   

20.
The adsorption of bovine serum albumin (BSA) at the air-water interface has been studied by specular neutron reflection. The variation of the adsorbed amount and the total thickness of the BSA layer with respect to bulk BSA concentration was determined at pH 5, close to its isoelectric point (IP). While the surface excess showed a steady increase with bulk concentration the thickness of the protein layer was found to be close to the short axial length of 40 ? of the globular solution structure of BSA at concentrations below 0.1 g dm-3, suggesting that BSA molecules adsorb with their long axes parallel to the surface of water. At 1 g dm-3 the adsorbed layer can be modeled as an upper layer of 40 ? with a volume fraction of 0.4 and a sublayer of 30 ? underneath the top main layer with a volume fraction of 0.12. The results suggest that, although there is some structural deformation accompanying adsorption, there is no denaturation. The extent of immersion of the BSA in water was determined by performing the measurements in D2O and in a mixture of H2O and D2O whose contrast matches that of BSA. The signal is then only from the part of the layer out of water. At pH 5 this layer was about 10 +/- 5 ? at a bulk concentration of 5 x 10(-4) g dm-3 and decreased to 5 +/- 3 ? at 1 g dm-3. The fraction of the BSA layer immersed in water therefore varies from about 70 to over 90%. The effect of pH on the adsorption was examined at two BSA concentrations. While pH had little effect on the adsorption at a low BSA concentration of 5 x 10(-3) g dm-3, both surface excess and layer thickness showed pronounced peaks at pH 5 at the higher concentration of 1 g dm-3. The increased adsorption at pH 5 is attributed to the reduced lateral electrostatic repulsion around the IP. This adsorption pattern became less pronounced when the total ionic strength was increased from 0.02 to 1 M, indicating that the electrolyte screens the electrostatic repulsions within the adsorbed layer. Copyright 1999 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号