首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
浸渍聚合法制备透明导电聚苯胺薄膜的研究   总被引:13,自引:0,他引:13  
李永明  万梅香 《高分子学报》1998,259(2):177-183
采用浸渍聚合法制备透明导电的聚苯胺薄膜,并系统地研究了基片、反应温度、氧化剂和掺杂剂等因素对聚苯胺透明导电薄膜的电学和光学性能的影响.在最佳的制备条件下,所得薄膜的室温电导率可达1~5S/cm.当厚度为05μm时,在450至650nm的透光窗口内,该薄膜的透光率可达80%.借助结构表征讨论了薄膜的生长机理和它的结构组成.  相似文献   

2.
碘掺杂聚苯胺呋喃是一类非共轭导电聚合物。用紫外吸收光谱、傅里叶变换红外吸收光谱、电子顺磁共振波谱、光电子能谱等对该聚合物的结构性质及导电机制进行了研究。  相似文献   

3.
聚苯胺/含联苯结构聚芳砜导电复合膜的研究   总被引:1,自引:1,他引:1  
采用溶液共混法得到了聚苯胺/含联苯结构聚芳砜导电复合膜。该复合膜有良好的力学性能和导电性能,对其导电规律进行了探讨。热分析结果表明复合膜有良好的热稳定性,用扫描电镜观察了复合膜的微观形貌,表明PAn与LPES的共混相容性较好。  相似文献   

4.
可溶导电聚苯胺的合成及其性能研究   总被引:21,自引:0,他引:21  
以十二烷基苯磺酸(DBSA)为乳化剂和掺杂剂,采用水一油二相乳液聚合物方法对苯胺进行合成,制备出高溶解性和高电导率的PAn,通过x-射线,电镜分析和热重分析对产物的结构和性能进行了研究。结果表明,该法合成的导电性PAn具有较高的特性粘度,溶解性,耐热性及结晶度,与非极性溶剂-表面活性剂-水三相体系聚合产物结果相似,透射电镜显示水乳液聚合产物呈较规则的纤维状取向排列。  相似文献   

5.
掺杂聚苯胺能带结构和导电机理的研究   总被引:7,自引:1,他引:7  
用EHMO-CO方法对质子掺杂聚苯胺进行了模型化理论计算,得到与吸收光谱实验数据一致的能带结构,研究表明,掺杂苯胺中的载流子是极化子,能满意地解释掺杂聚苯胺的导电机制。  相似文献   

6.
用EHMO-CO方法研究了卤代聚苯胺的能带结构及其掺杂导电机理,结果表明,在掺杂态卤代聚苯胺中形成单极化子晶格;取代主要通过改变带宽影响电导率,由掺杂而大幅度地提高了电导率是因为大大缩小了带隙,并进一步证实了外层d轨道的成键作用。  相似文献   

7.
手征导电聚苯胺   总被引:2,自引:0,他引:2  
综述了手征导电聚苯胺的研究进展。对手征导电聚苯胺的制备方法、手征构象的形成及影响因素、应用研究的现状及发展趋势作了扼要论述。  相似文献   

8.
本征导电聚合物涂层及界面   总被引:1,自引:0,他引:1  
本文结合我们实验研究结果及国外最近的研究进展,对在绝缘基质的表面本征导电聚合物涂层的形成、结构和性能作了扼要的分析,指出了化学反应法中通过单体向整体聚合物表层扩散聚合形成的导电膜、界面的偶联作用和电荷转移作用等几种新近证实的原理,在加速导电聚合物涂层的应用中,具有重要意义。  相似文献   

9.
水基导电聚苯胺及其复合材料   总被引:2,自引:0,他引:2  
由于对离子诱导掺杂技术的发展,聚苯胺在有机溶剂中的加工问题已经得到解决,但日益增长的环保要求使得聚苯胺的水系加工倍受关注.本文通过分析聚苯胺水系加工的研究进展,认为从水溶性导电聚苯胺向水分散性导电聚苯胺转变是未来水基导电聚苯胺的主要发展趋势,水基导电聚苯胺复合材料是解决聚苯胺实际应用问题的主要形式.  相似文献   

10.
聚苯胺是一种结构型导电高分子,因其特殊的结构和优异的物理化学性能,使它在二次电池、金属防腐、传感器、电容器、电磁屏蔽及抗静电等领域有着广泛而深入的应用前景。本文概述了导电聚苯胺的结构和特性,主要综述了聚苯胺/橡胶基复合材料的制备方法。其制备方法主要有共混法和聚合法,共混法主要有机械熔融共混法、溶液共混法和乳液共混法;聚合法主要包括电化学聚合、原位乳液聚合法、吸附聚合法等,总结了聚苯胺/橡胶基复合材料的研究情况及发展应用。  相似文献   

11.
采用插层聚合法制备了导电聚苯胺/钙基膨润土、聚苯胺/有机化膨润土复合材料.以电导率为考核指标,通过正交设计优化了苯胺的加入量、反应温度和反应时间等参数.结果表明,苯胺的加入量影响较显著,反应温度对聚苯胺/有机化膨润土复合材料影响较聚苯胺/钙基膨润土体系明显,反应时间的延长,有利于聚苯胺/有机化膨润土复合材料电导率的提高.聚苯胺/钙基膨润土复合材料制备的最佳工艺条件为:苯胺加入量为70%,反应温度为0℃,反应时间为6 h;聚苯胺/有机化膨润土复合材料制备的最佳工艺条件为:苯胺加入量为70%,反应温度为室温,反应时间为8 h.利用红外光谱(FT-IR)、X射线衍射(XRD)和四探针技术表征了材料的组成、结构和性能.结果表明:膨润土经有机化后,晶面间距增大较多;苯胺单体与钙基膨润土插层聚合后,膨润土晶面间距增大不多;苯胺单体与有机化膨润土复合后,破坏了膨润土的晶格结构,形成了混杂复合体系,电导率达10-3S.cm-1.  相似文献   

12.
Thermal transporting properties of electrically conductive polyaniline films were first investigated in wide range of temperatures above room temperature as organic thermoelectric materials. Thermal conductivities of various protonic acid-doped polyaniline films were measured by combination of a laser flash method and a differential scanning calorimeter in relation with electrical conductivity and a kind of dopant. The thermal conductivities thus measured are in the range of conventional organic polymers, indicating that the doped polyaniline films have extremely low thermal conductivities among electrically conductive materials, and have correlation with neither electrical conductivity, nor a kind of dopant. Consequently the polyaniline film, which shows very high electrical conductivity, has comparable thermoelectric figure-of-merit (ZT) with feasible inorganic thermoelectric materials such as iron silicide. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
炭黑/聚苯胺纳米复合粒子的制备与表征   总被引:1,自引:0,他引:1  
用现场原位聚合法制备了炭黑/聚苯胺纳米复合粒子,讨论了聚合反应条件对产物电导率的影响,并表征了复合粒子的形态和耐热性能.结果表明,所得的炭黑/聚苯胺纳米复合粒子粒度约为50 nm并具有核-壳结构,其电导率达30 S.cm-1,热分解温度约为600℃.  相似文献   

14.
聚苯胺/顺丁橡胶复合导电膜的制备与性能   总被引:1,自引:4,他引:1  
采用溶液共混与浇铸法制备聚苯胺(PAn )/顺丁橡胶(BR)复合导电膜,确定了本征态聚苯胺以顺丁橡胶为弹性基体材料,甲苯为溶剂,过氧化二苯甲酰为交联剂,十二烷基苯磺酸作为共混分散剂和聚苯胺掺杂剂的复合膜制备工艺,并对复合膜的导电性能和形态结构进行了测试与表征.  相似文献   

15.
In this study, free‐standing polymer films were obtained first with an electrochemical coating of polyaniline and then with a coating of polypyrrole on an insulating polycarbonate‐coated Pt electrode. The films contained varying amounts of polyaniline and polypyrrole obtained by varying the electrolysis time, and their conductivities were determined. The Raman spectra of the films taken from the electrode side were similar to those of pure polyaniline, whereas the spectra of the solution side were identical to those of pure polypyrrole. The resistance change in the films between −15 and +120°C revealed that the films were sensitive to temperature. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 51–59, 2000  相似文献   

16.
Synthesis and characterization of polyaniline‐grafted poly(styrene‐alt‐maleic anhydride) (PANI‐g‐PSMA) was carried out to obtain conductive comb copolymers with highly improved processability. First, polyaniline (PANI) was prepared in nano‐scale by chemical synthesis under ultrasonic irradiation. Then the poly(styrene‐alt‐maleic anhydride) (PSMA) was synthesized by free radical polymerization. Moreover, the PANI was grafted on the PSMA backbone to prepare a comb‐like conductive copolymer for improving its processability as a new method. The products were characterized by Fourier transform infrared, ultraviolet–visible spectroscopy and X‐ray diffraction patterns. Morphology of the samples was also investigated by scanning electron microscopy images. Finally, the solubility and conductivity of the products were studied, and it resulted in high solubility of the products in water and other common organic solvents in comparison to the pure PANI. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Polyaniline (PANI) in an emeraldine‐base form, synthesized by chemical oxidation polymerization, was doped with camphor sulfonic acid (CSA). The conducting complex (PANI–CSA) and a matrix, polyamide‐66, polyamide‐11, or polyamide‐1010, were dissolved in a mixed solvent, and the blend solution was dropped onto glass and dried for the preparation of PANI/polyamide composite films. The conductivity of the films ranged from 10?7 to 100 S/cm when the weight fraction of PANI–CSA in the matrices changed from 0.01 to 0.09, and the percolation threshold was about 2 wt %. The morphology of the composite films before and after etching was studied with scanning electron microscopy, and the thermal properties of the composite films were monitored with differential scanning calorimetry. The results indicated that the morphology of the blend systems was in a globular form. The addition of PANI–CSA to the films resulted in a decrease in the melting temperature of the composite films and also affected the crystallinity of the blend systems. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2531–2538, 2002  相似文献   

18.
Polyaniline–emeraldine base (EB) fiber with excellent mechanical and electrical properties have been spun from highly concentrated (20% w/w), EB/N‐methyl‐2‐pyrrolidinone (NMP)/2‐methylaziridine (2 MA) solution. These solutions had gelation times, which varied from hours to days depending on the molar ratio of 2 MA to EB tetramer repeating unit in the N‐methyl‐2‐pyrrolidinone (NMP) solvent. To better compare the mechanical and electrical properties, dense films were also prepared by thermal evaporation of less concentrated solution (1% w/w). Both fibers and films were amenable to thermal stretching with maximum draw ratios of 4 : 1 and these stretched samples exhibited the greatest tensile strength overall. Wide‐angle X‐ray diffraction (WAXD) of as‐spun and 4‐times stretched fiber showed a completely amorphous structure. Fiber subjected to heat treatment at 250 °C under N2 flux for 2 h displayed further improvements in mechanical properties because of crosslinking between the polymer chains. Fibers and films were later doped by immersion in a variety of aqueous acid solutions. Room temperature DC conductivities for the doped samples ranged from 6 × 10−4 to 45 S/cm depending on the specific choice of acid. Scanning electron microscopy of fiber samples shows the presence of macrovoid formation during fiber spinning. Continued refinement of the processing parameters and fiber post‐treatment, to enhance chain alignment and increase fiber density, will likely lead to additional improvements in the fiber mechanical and electrical properties. Characterization of emeraldine base (EB) powder, solution, films, and fibers by UV‐Vis, DSC, TGA, and WAXD were also performed. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 194–204, 2000  相似文献   

19.
The electrical conductivity and thermoelectric power of polyaniline/PVC blends was measured. Surprisingly, the conductivity of the blends is greater at low temperatures than that of the pure polyaniline sample. The conductivity follows approximately an exp (?T?1/2) law over a considerable range of temperature, with deviations from this law observed at high temperature increases (with positive sign) except at very low temperatures, where negative peaks are observed. Possible models to interpret these observations are mentioned. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
The focus of this study was to synthesize the inherently conductive polymer polyaniline using an optimized process to prepare polyaniline/silicon dioxide (PANI/SiO2) composites by in situ polymerization and ex situ solution mixing. PANI and PANI/SiO2 composite films were prepared by drop‐by‐drop and spin coating methods. The electrical conductivities of HCl doped PANI film and PANI/SiO2 composite films were measured according to the standard four‐point‐probe technique. The composite films exhibited an increase in electrical conductivity over neat PANI. PANI and PANI/SiO2 composites were also investigated by spectroscopic methods including UV‐Vis, FT‐IR, and Photoluminescence. UV‐Vis and FT‐IR studies showed that SiO2 particles affect the quinoid units along the polymer backbone and indicate strong interactions between the SiO2 particles and the quinoidal sites of PANI (doping effect). The photoluminescence properties of PANI and PANI/SiO2 composites were studied and the PANI/SiO2 composites showed increased intensity as compared to neat PANI. The increase of conductivity of PANI/SiO2 composite may be partially due to the doping or impurity effect of SiO2 where the silicon dioxides compete with chloride ions. The morphology of particles and films were examined by a scanning electron microscope (SEM). SEM measurements indicated that the SiO2 were well dispersed and isolated in composite films. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号