共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
设计了一个工作于40 GHz的低噪声放大器,提出了一种改进的Cascode电路结构并设计了匹配网络。为了获取高Q值,电感使用了共面波导短路线实现。电路使用0.13-µm SiGe BiCMOS工艺,其截止频率fT 为103GHz,芯片尺寸为0.21 mm2。该低噪声放大器使用一级Cascode电路结构,-3dB带宽为34GHz到44GHz.。在40GHz频率点上,测量的增益为8.6dB,输入回波损耗S11为-16.2dB。仿真的噪声系数为5dB。在2.5V供电电压下,电路消耗的电流仅为3mA。 相似文献
5.
6.
本文首先从低噪声放大器设计的基本原理和方法入手,对晶体管放大器的噪声模型(En-In模型)做了分析,并以实现放大器低噪声化为出发点,阐述了具体设计的几个过程,最后对级联放大器的低噪声设计进行探讨。本文并非从工程设计的角度全面论述低噪声设计的各个方面,而是仅就低噪声设计中需要考虑的一些问题做一概述,从而为一些有志于音响工作的人们研究低噪声系统的设计问题提供方便。 相似文献
7.
8.
本文对低功耗射频CMOS低噪声放大器的输入匹配网络进行了研究。采用台积电TSMC0.18μmCMOS工艺模型,通过ADS电路仿真软件对设计的低噪声放大器电路进行了优化设计和仿真,仿真结果表明在2.4GHz中心工作频率下,该低噪声放大器满足射频接收机的系统要求,它的噪声系数NF约为2.57dB,增益S21约为16.2dB,输入反射系数S11约为-13.3dB,输出反射系数S22约为-21.9dB。电路的输入匹配和输出匹配情况良好。 相似文献
9.
10.
11.
本文介绍了一种运用级间并联电感优化CMOS低噪声放大器的设计方法。传统的级联低噪声放大器可以从两级级联放大器的角度出发,视为共源级和共栅级的级联,由于共栅极的极好的隔离性,两级放大器可以分别设计。理论分析表明:在共源极和共栅极间引入级间匹配网络,即并联一个电感加强两极间的耦合,可以有效的改善低噪放的功率增益和噪声性能。文章最后用一个工作于5GHz的低噪放的设计实例,验证了理论分析的正确性。 相似文献
12.
Roee Ben Yishay Sara Stolyarova Moshe Musiya Yossi Shiloh 《Microelectronics Journal》2011,42(5):754-757
The paper presents the design and characterization of a low noise amplifier (LNA) in a 0.18 μm CMOS process with a novel micromachined integrated stacked inductor. The inductor is released from the silicon substrate by a low-cost CMOS compatible dry front-side micromachining process that enables higher inductor quality factor and self-resonance frequency. The post-processed micromachined inductor is used in the matching network of a single stage cascode 4 GHz LNA to improve its RF performance. This study compares performance of the fabricated LNA prior to and after post-processing of the inductor. The measurement results show a 0.5 dB improvement in the minimum noise figure and a 1 dB increase in gain, while good input matching is maintained. These results show that the novel low-cost CMOS compatible front-side dry micromachining process reported here significantly improves performance and is very promising for System-On-Chip (SOC) applications. 相似文献
13.
GAO Yuan ZHANG Bao-jun ZHANG BO 《中国邮电高校学报(英文版)》2014,21(4):15-18
With rapid development communication system, high signal to noise ratio (SNR) system is required. In high frequency bandwidth, high loss, low Q inductors and high noise figure is a significant challenge with on-chip monolithic microwave integrated circuits (MMICs). To overcome this problem, high Q, low loss transmission line characteristics was analyzed. Compared with the same inductor value of the lumped component and the transmission line, it has a higher Q value and lower loss performance in high frequency, and a 2-stage common-source low noise amplifier (LNA) was presented, which employs source inductor feedback technology and high Q low loss transmission line matching network technique with over 17.6 dB small signal gain and 1.1 dB noise figure in 15 GHz-18 GHz. The LNA was fabricated by WIN semiconductors company 0.15 μm gallium arsenide (GaAs) P high electron mobility transistor (P-HEMT) process. The total Current is 15 mA, while the DC power consumption is only 45 mW. 相似文献
14.
A 1.5-V, 1.5-GHz CMOS low noise amplifier 总被引:11,自引:0,他引:11
A 1.5-GHz low noise amplifier (LNA), intended for use in a global positioning system (GPS) receiver, has been implemented in a standard 0.6-μm CMOS process. The amplifier provides a forward gain (S21) of 22 dB with a noise figure of only 3.5 dB while drawing 30 mW from a 1.5 V supply. In this paper, we present a detailed analysis of the LNA architecture, including a discussion on the effects of induced gate noise in MOS devices 相似文献
15.
During this study, various narrowband single-ended inductive source degenerated Low Noise Amplifiers (LNAs) for GSM and S-band low earth orbit (LEO) space applications have been designed, simulated and compared using Mietec CMOS 0.7 μm process and the Cadence/BSIM3v3. To get more realistic results, parasitic effects due to layout have been calculated and added to the simulations. Also, considering the inductive source degenerative topology, most of the attention is given on the modeling of planar spiral inductor by lumped element circuits. Moreover to decrease the substrate effects, the inductors have been surrounded by grounded guard rings and have patterned ground shield (PGS) under them. The simulation results of LNA including the parasitic effects indicate a forward gain of 9 dB with noise figure of 4.5 dB while drawing 18 mW from+3 V supply at 2210 MHz. The area occupied is 1.8 mm×1.6 mm with pads, 1.3 mm×1.2 mm without pads. 相似文献
16.
26-42 GHz SOI CMOS low noise amplifier 总被引:3,自引:0,他引:3
A complementary metal-oxide semiconductor (CMOS) single-stage cascode low-noise amplifier (LNA) is presented in this paper. The microwave monolithic integrated circuit (MMIC) is fabricated using digital 90-nm silicon-on-insulator (SOI) technology. All impedance matching and bias elements are implemented on the compact chip, which has a size of 0.6 mm /spl times/ 0.3 mm. The supply voltage and supply current are 2.4 V and 17 mA, respectively. At 35 GHz and 50 /spl Omega/ source/load impedances, a gain of 11.9 dB, a noise figure of 3.6 dB, an output compression point of 4 dBm, an input return loss of 6 dB, and an output return loss of 18 dB are measured. The -3-dB frequency bandwidth ranges from 26 to 42 GHz. All results include the pad parasitics. To the knowledge of the author, the results are by far the best for a silicon-based millimeter-wave LNA reported to date. The LNA is well suited for systems operating in accordance to the local multipoint distribution service (LMDS) standards at 28 and 38 GHz and the multipoint video distribution system (MVDS) standard at 42 GHz. 相似文献
17.
Qiuzhen Wan Chunhua WangAuthor vitae 《AEUE-International Journal of Electronics and Communications》2011,65(12):1006-1011
A new low complexity ultra-wideband 3.1–10.6 GHz low noise amplifier (LNA), designed in a chartered 0.18 μm RFCMOS technology, is presented in this paper. The ultra-wideband LNA only consists of two simple amplifiers with an inter-stage inductor connected. The first stage utilizing a resistive current reuse and dual inductive degeneration techniques is used to attain a wideband input matching and low noise figure. A common source amplifier with inductive peaking technique as the second stage achieves high flat gain and wide the −3 dB bandwidth of the overall amplifier simultaneously. The implemented ultra-wideband LNA presents a maximum power gain of 15.6 dB, a high reverse isolation of −45 dB and a good input/output return losses are better than −10 dB in the frequency range of 3.1–10.6 GHz. An excellent noise figure (NF) of 2.8–4.7 dB was obtained in the required band with a power dissipation of 14.1 mW under a supply voltage of 1.5 V. An input-referred third-order intercept point (IIP3) is −7.1 dBm at 6 GHz. The chip area including testing pads is only 0.8 mm × 0.9 mm. 相似文献
18.
A single-ended low noise amplifier in 65 nm CMOS for applications at 60 GHz is presented. Its measured gain and noise figure at the centre frequency of 57 GHz are 19.1 dB and 5.5 dB, respectively, and it provides wideband matching. Transistors in the design have an asymmetrically fingered layout which reduces parasitic capacitances while simultaneously allowing for higher channel current densities. 相似文献
19.
论述了在射频电路仿真软件ADS中实现低噪声放大器的整个设计过程,包括低噪声放大器的晶体管的选取、输入输出匹配网络设计以及实现形式等.结合版图与系统结构框图,论述该设计的微调小岛与扇形开路支节等结构应用,同时指出结构尺寸设计的理论依据.最终以图形方式给出满足指标要求的设计结果. 相似文献