首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A simple functional representation of the concentration dependence of the low-shear viscosity eta of hard sphere suspensions is proposed. The representation, which agrees with published literature at all volume fractions phi, has a hitherto-unremarked transition in its functional form at phi approximately 0.42 identical with phi(t). phi(t) is definitely less than the volume fraction 0.49 of the hard sphere melting transition.  相似文献   

2.
The rheology of monodisperse polystyrene latex particles of two different particle radii (26 and 67 nm) has been studied with a range of concentrations of the polyampholyte gelatin. Gelatin contributes to the rheology by adsorption to the particles and by thickening the continuous phase. High viscosities and strong shear thinning are measured for low volume fractions of latex. A procedure is presented to deconvolute the effects of free and bound gelatin by applying simple hard-sphere models. This procedure allows us to estimate the effective size of the gelatin-covered particles as well as the continuous-phase gelatin concentration and viscosity. The layer thicknesses from rheology agree well with those from PCS. The effect of varying particle volume fraction, ionic strength, pH and gelatin and surfactant concentration on the rheology of these suspensions is presented. For the smaller latex, the adsorbed layer occupies a greater fraction of the effective volume. Increasing free polymer concentration reduces the adsorbed-layer thickness. The reduced critical shear stress increases with the suspension viscosity for suspensions of the 26 nm latex but is constant for the 67 nm latex. At very high shear (>2000 s−1), the suspensions show excess shear thinning over that expected from a hard-sphere model. This excess thinning is attributed to deformation of the adsorbed gelatin layer under high shear stress and interpreted in terms of an empirical interparticle potential.  相似文献   

3.
The dependence of the efficiency of positive electrorheological (ER) phenomenon, expressed as a ratio of the low-shear electroviscosity to the field-off viscosity, on the particle concentration of polyaniline base suspensions in silicone oil has been studied. A simple analysis reveals that the dependence of the efficiency on the volume fraction of suspended particles may have a maximum at which the optimum ER performance of material is expected. Experimental results confirmed this expectation. It is demonstrated that with higher temperature the maximum is shifted to higher particle concentration.  相似文献   

4.
The rheology of a complex, heterogeneous mineral colloid was rationalised using models devised for model rod systems. Mixing a calcium hydroxide slurry with an aluminium sulphate solution produces a suspension of rod-shaped ettringite particles. Ettringite rod suspensions exhibit non-Newtonian flow behaviour, which depends on the shape of the particles, their size distribution, concentration and surface properties as well as the suspension medium characteristics. We have measured the shear viscosity of suspensions of ettringite rods with a median aspect ratio, r(i) approximately 8, at 25 degrees C as a function of particle volume fraction, phi, in the range 0.0001-0.08. It was found that the viscosity of the suspensions increased with phi, and showed a marked change of slope at phi approximately 0.01, which we identified as the minimum overlap concentration phi(*). Above phi(*), the system is in the semi-dilute regime. At phi>phi(*), when Pe(rot)>1, hydrodynamic interactions between rods become increasingly significant, and we observe shear-thinning behaviour. The high effective hydrodynamic volume of rotating rods, resulting in much lower values of the maximum packing fraction, phi(c), than for spheres, dominates the rheological behaviour of ettringite suspensions.  相似文献   

5.
The microviscosity of dilute latex + gelatin dispersions has been studied by dynamic light-scattering at gelatin concentrations up to 1.0 wt % and temperatures in the range 8–45 °C. The change in mean particle diffusion coefficient following a rapid quench correlates strongly with the change in bulk shear viscosity of the gelatin solution. Slow thermal studies of latex + gelatin exhibit hysteresis effects which are mirrored by bulk viscometry data for gelatin solutions at the same concentration.  相似文献   

6.
The formation and rheological behavior of a viscoelastic wormlike micellar solution in an aqueous solution of a nonionic fluorinated surfactant, perfluoroalkyl sulfonamide ethoxylate, of structure C8F17SO2N(C3H7)(CH2CH2O)10H was studied. Temperature-induced viscosity growth is observed even at low-surfactant concentration (approximately 1 wt %), and viscosity reaches the maximum at a temperature T(eta)-max. Upon successive increases in the temperature, the viscosity decreases, and ultimately a phase separation occurs. Small-angle X-ray scattering (SAXS) measurements confirm the presence of cylindrical aggregates at low temperature, which undergo continuous one-dimensional growth with increasing temperature, and ultimately, an indication of a slight lamellarlike structural pattern is observed, which probably comes from the formation of micellar joints or branching. Such changes in the microstructure result in a decrease in the viscosity and stress-relaxation time, while the network structure is retained; the trends in the evolution of shear modulus (Go) and relaxation time (tauR) with temperature are in agreement with this. With increased surfactant concentration, the temperature corresponding to the viscosity maximum (T eta-max) in the temperature-viscosity curve shifts to lower values, and the viscosity at temperatures below or around T eta-max increases sharply. A viscoelastic solution with Maxwellian-type dynamic rheological behavior at low-shear frequency is formed, which is typical of entangled wormlike micelles. Rheological parameters, eta(o) and Go, show scaling relationships with the surfactant concentrations with exponents slightly greater than the values predicted by the living-polymer model, but the exponent of tauR is in agreement with the theory. Dynamic light-scattering measurements indicate the presence of fast relaxation modes, associated with micelles, and medium and slow modes, associated with transient networks. The disappearance of the slow mode and the predominance of the medium mode as the temperature increases support the conclusions derived from SAXS and rheometry.  相似文献   

7.
The flowing nature and rheological properties of polymethyl methacrylate latex systems in a coaxial cylinder viscometer were studied on the basis of laminar shear flow model and rheological experimental data. The physical meaning of laminar viscosity (eta(i,j)) and zero shear viscosity (eta(0)) were described. We assumed that laminar shear flows depended on position and shear time, so microrheological parameters were the function of position and shear time. eta(i,j) was the viscosity of any shear sheet i between two neighboring laminar shear flows at time t; j was denoted as j=t/Deltat; and Deltat was the interacting time of two particles or two laminar shear flows. tau(i,j) and gamma(i,j) were shear stress and shear rate of any shear sheet i at j moment. According to Newton regulation tau(i,j)=eta(i,j)gamma(i,j), apparent viscosity eta(a) should be a statistically mean value of j shear sheets laminar viscosity at j moment, i.e., eta(a)= summation operator(i=j)eta(i,j)gamma(i,j)/ summation operator(i=j)gamma(i,j). eta(0) was defined as shear viscosity between a laminar shear flow and a still fluid surface, i.e., eta(0)=(tau(i,j)/gamma(i,j))(j-i-->0). These new ideas described above may be helpful in the study of the micromechanisms of latex particle systems and worthy of more research.  相似文献   

8.
This experimental study of viscosity of colloidal suspensions was performed using monodisperse polystyrene latex with particle diameter of 1.15 μm and a pH dependent negative zeta potential of up to 120 mV in aqueous solutions. The range of electrostatic repulsion between the particles was controlled by varying the concentration of potassium chloride. Suspensions under investigation were either in a stable, coagulated, or gelated, state depending on the salt concentration. Shear thinning behaviour was observed for all the samples studied. The dependence of viscosity on shear rate imposed was found to depend substantially on the salt concentration.  相似文献   

9.
Lignosulfonate is a colloidal polyelectrolyte widely used as a dispersant in various industrial applications and produced during chemical pulping of wood chips. Here we present a systematic small-angle X-ray scattering (SAXS) and rheological study of fractionated lignosulfonate (mass weighted molar mass M w 18 000 g/mol) dissolved in water and 0.2 M NaCl. The concentration range varied from semidilute to concentrated regime. SAXS intensity of all solutions followed the Porod law at all concentrations, which is a clear indication of a compact shape of the lignosulfonate particle. In water, below 10 mass % lignosulfonate, the average interparticle distance obtained from SAXS patterns relates to concentration via a power law with exponent -0.28. Deviation of the power law exponent from ideal -0.33 and a linear decrease in volume fraction normalized Porod constant as a function of concentration are taken as indications of self-association of lignosulfonate. In saline solutions at high lignosulfonate mass fractions the average distance between lignosulfonate particles was longer and the average particle size was larger than those in aqueous solutions. The intrinsic viscosity in saline solution also was larger than that in aqueous solution. Lignosulfonate solutions showed Newtonian viscosity, except at very high concentrations. The variation of the relative zero-shear viscosity eta(0),r) with concentration was interpreted with the Krieger-Dougherty equation. An oblate spheroid shape with an axial ratio of 3.5 describes the average shape of the lignosulfonate particles in saline solutions based on SAXS intensities, the size distribution obtained using gel permeation chromatography, and rheological characterization. The largest dimension of the particles was about 8 nm. SAXS and rheology studies as a function of temperature reveal indications of temperature-dependent self-association.  相似文献   

10.
Stability of aqueous suspensions of multiwalled carbon nanotubes (MWNTs) and their percolation behavior are investigated. Nanotubes of aqueous suspensions show a strong tendency to aggregation and networking into electroconductive clusters. The percolation threshold of the electrical conductivity is rather low and of order phi approximately 0.01 (where phi is the volume fraction), which can be explained by the high aspect ratio of MWNTs. Strong influence of the nonionic surfactant Triton X-305 on the colloidal stability of aqueous suspensions of MWNTs is observed. Addition of surfactant exerts a stabilizing effect at surfactant concentration C(s) proportional to the weight concentration C of MWNTs, C(s) approximately C mol/dm3. The transient behavior of electrical conductivity in the aqueous suspensions is explained by fractal aggregation processes. The fractal dimension is shown to be sensitive to the surfactant concentration C(s).  相似文献   

11.
Associating polymers are hydrophilic long-chain molecules containing a small amount of hydrophobic groups. The aqueous solutions show viscoelastic responses above some critical concentrations because a three-dimensional structure is formed by association of hydrophobic groups. When the associating polymers are added to silica suspensions at low concentrations, the flocculation is induced by bridging mechanisms, and the flow of suspensions become shear-thinning. For suspensions prepared with polymer solutions in which the associating network is developed, the viscosity decreases, shows a minimum, and then increases with increasing particle concentration. The viscosity decrease may arise from the breakdown of associating network due to adsorption of polymer chains onto the silica surfaces. As the particle concentration is increased, the polymer concentration in solution is decreased, and finally, all polymer chains are adsorbed on the surfaces. Beyond this point, the partial coverage of particle surfaces takes place and strong interactions are generated between particles by polymer bridging. Since the stable suspensions are converted to highly flocculated systems, the viscosity is increased and the flow becomes shear-thinning. The concentration effect of silica particles on the viscosity behavior of suspensions can be explained by a combination of viscosity decrease in solution due to polymer adsorption and viscosity increase due to flocculation.  相似文献   

12.
We present the formation of viscoelastic wormlike micelles in mixed amino acid-based anionic and nonionic surfactants in aqueous systems in the absence of salt. N-Dodecylglutamic acid (designated as LAD) has a higher Krafft temperature; however, on neutralization with alkaline amino acid l-lysine, it forms micelles and the solution behaves like a Newtonian fluid at 25 degrees C. Addition of tri(oxyethylene) monododecyl ether (C(12)EO(3)) and tri(oxyethylene) monotetradecyl ether (C(14)EO(3)) to the dilute aqueous solution of the LAD-lysine induces one-dimensional micellar growth. With increasing C(12)EO(3) or C(14)EO(3) concentration, the solution viscosity increases gradually, but after a certain concentration, the elongated micelles entangle forming a rigid network of wormlike micelles and the solution viscosity increases tremendously. Thus formed wormlike micelles show a viscoelastic character and follow the Maxwell model. Tri(oxyethylene) monohexadecyl ether (C(16)EO(3)), on the other hand, could not form wormlike micelles, although the solution viscosity increases too. The micelles become elongated; however, they do not appear to form a rigid network of wormlike micelles in the case of C(16)EO(3). Rheological measurements have shown that zero shear viscosity (eta(0)) increases with the C(12)EO(3) concentration gradually at first and then sharply, and finally decreases before phase separation. However, no such maximum in the eta(0) plot is observed with the C(14)EO(3). The eta(0) increases monotonously with the C(14)EO(3) concentration till phase separation. In studies of the effect of temperature on the wormlike micellar behavior it has been found that the eta(0) decays exponentially with temperature, following an Arrehenius behavior and at sufficiently higher temperatures the solutions follow a Newtonian behavior. The flow activation energy calculated from the slope of log eta(0) versus 1/T plot is very close to the value reported for typical wormlike micelles. Finally, we also present the effect of neutralization degree of lysine on the rheology and phase behavior. The formation of wormlike micelles is confirmed by the Maxwell model fit to the experimental rheological data and by Cole-Cole plots.  相似文献   

13.
Voltammetry of vinylferrocene (VFc)-immobilized polystyrene(PS)-based latex particles was carried out in aqueous suspensions by changing the size of latex particles in order to investigate the dependence of the electroactivity of the particles on their size. The anodic peak current was controlled by diffusion of the latex. The voltammetric peak currents increased with an increase in the diameter of PS latex particles for a given analytical concentration of the particles, exhibiting the dependence on 1.5 powers of the diameter of the particles. The increase can be explained in terms of combination of the uniform distribution of VFc in the particle, the partial charge transfer, and the Stokes-Einstein equation for diffusion coefficients. The oxidation of VFc occurs in the restricted domain (0.07 microm) from a contact point of the particle with the electrode. The overall reaction mechanism is diffusion of the particle to the electrode, partial oxidation to VFc+, release of VFc+ from the particle to the solution, and reduction of the released VFc+.  相似文献   

14.
Single- and double-stranded calf thymus DNA and two polynucleotides (0.4 mM) were studied in aqueous solution at pH approximately 7 using pulsed, 20 ns laser excitation at 193 nm. Monophotonic ionization of the nucleic acids is suggested from the linear dependences of the concentration of ejected electrons and the number of single- and double-strand breaks (ssb, dsb, respectively) on laser intensity (IL) in the range (0.2-3) x 10(6) W cm-2. The quantum yields of formation of hydrated electrons (phi e-) and ssb and dsb (phi ssb and phi dsb) are therefore independent of IL. In contrast, under 248 nm excitation these quantum yields increase linearly with IL under otherwise comparable conditions. Nevertheless, several effects and mechanistic implications are analogous using lambda exc = 193 and 248 nm. For polycytidylic acid, poly(C), in Ar-saturated solution for example, the efficiency of ssb per radical cation (eta RC = phi ssb/phi e-) is similar to the efficiency of ssb per OH radical (eta OH). For polyadenylic acid, poly(A), and single- and double-stranded DNA eta RC (lambda exc = 193 nm) is significantly smaller than eta OH. The ratio phi ssb (N2O)/phi ssb (Ar) is approximately 2 for poly(C), approximately 4 for poly(A) approximately 10 for DNA; the conversion of hydrated electrons into OH radicals in N2O-saturated solution and smaller eta RC than eta OH values in the case of DNA account for these results. For double-stranded DNA phi dsb does not depend on IL but increases linearly with the dose, indicating an accumulative effect of two ssb to generate one dsb. The critical distance for this event is 60-85 phosphoric acid diester bonds.  相似文献   

15.
The origin of the variety of characteristics of the reduced viscosity of aqueous suspensions of charged spherical particles has been an unsolved problem. To solve the problem, the reduced viscosity due to interparticle electrostatic interactions between charged spherical particles are calculated as a function of particle concentration with scanning various parameters, such as diameter of particle, number of charges per particle, and added‐salt concentration. The result successfully reproduced the variety of characteristics. Of all the scanned parameters, the diameter of the particle has a significant role to display the variety of characteristics when other parameters are fixed. When the diameter is very small (~0 Å), the calculated reduced viscosity of aqueous suspensions of charged spherical particles increases with decreasing particle concentration and it shows a maximum. This behavior is very similar to the reduced viscosity of linear chain polyelectrolyte solutions. Whereas, when the diameter is large (>2000 Å), the calculated reduced viscosity decreases with decreasing particle concentration and it does not show a maximum. When the diameter is <1000 Å, the calculated reduced viscosity shows both the maximum and minimum. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1068–1074, 2004  相似文献   

16.
17.
The rheological properties of aqueous suspensions consisting of cationic starch (CS) and positively charged aluminum magnesium hydrotalcite-like compound (HTlc) were investigated. Special emphasis was placed on the thixotropic phenomena. With the increase of mass ratio (R) of HTlc to CS, the equilibrium viscosity (eta(eq)) and the consistency coefficient (m) values of the suspensions increase in the range of neutral and alkaline pH (higher than 6.5) while decrease in the range of acid pH (lower than 6.5). With the increase of pH value, the eta(eq) and m values of the suspensions in the R range of 0-0.08 studied increase initially and then decrease, appearing a maximum value at about pH 7.41+/-0.25. The CS/HTlc suspensions display viscid character and the yield point of the suspensions was not observed except the suspension with R=0.08 in the pH range of 7.66-9.70, which showed a yield point and viscoelasticity. The CS/HTlc suspensions may display different thixotropic types: negative, complex or positive thixotropy, depending on pH and R value. The thixotropic type of the CS/HTlc suspension may be transformed from negative (pure CS solution), through complex (R=0.02), into positive thixotropy (R=0.05 and 0.08) with the increase of R in the studied R range of 0-0.08, and the thixotropic strength of the suspensions increases initially and then decreases with pH value in the pH range studied. The mechanism of the thixotropic phenomenon is discussed.  相似文献   

18.
The concentration dependence of the viscosity is studied for suspensions of approximately hard, i.e., short-range repulsive, platelets. We combine rheological measurements on suspensions of sterically stabilized platelike colloids with dissipative particledynamics simulation for disks. This yields, for the first time, results for the intrinsic viscosity of (nearly) hard plate suspensions, as well as the second- and third-order φ (platelet volume fraction) coefficients in the viscosity. The intrinsic viscosity is used to calculate the number-average aspect ratio of the platelets, which is found to be 6.5 and 12 respectively for the two suspensions studied. The measured Huggins coefficients are intermediary between the theoretical value for hard spheres and hard rods. The combined results from viscosity measurements and simulations provide insight into the effect of Péclet number, particle model, and polydispersity on the viscosity of approximately hard platelet suspensions. Copyright 2001 Academic Press.  相似文献   

19.
Liquid-liquid phase separation of a homogeneous polyampholyte (gelatin) solution into a dense polymer-rich coacervate and the dilute supernatant phase is discussed through free-energy landscape formalism. We have evaluated the free energy and entropy of the system as it undergoes the phenomenon of simple coacervation, driven by the addition of a nonsolvent. Electrophoretic mobility (mu) and turbidity measurements were performed on 0.01% and 0.05% (w/v) aqueous gelatin solutions that were driven towards coacervation by the addition of ethanol. The mobility of the polyampholyte molecules, which was typically mu approximately 0.38+/-0.02 microm/s cm/V in water, gradually reduced for the soluble intermolecular complexes to a plateau value of mu approximately 0.11+/-0.01 microm/s cm/V as the ethanol volume fraction equaled phi(ns) approximately 0.47+/-0.03, which coincided with the first appearance of coacervate droplets (coacervation transition) observed from turbidity measurements, a behavior found to be invariant of gelatin concentration. These results were used as input to the theoretical model to explicitly construct the free-energy landscape for a single gelatin chain and the global system comprising the polymer-rich coacervate and the dilute supernatant phase.  相似文献   

20.
Recently, steric repulsive forces induced by a new graft copolymer surfactant, which is based in inulin (polyfructose), have been described. Previous investigations by atomic force microscopy between solid surfaces covered with adsorbed surfactant indicated strong repulsive forces even at high electrolyte concentration, due to the steric repulsion produced by the surfactant hydration. In the present paper, the colloidal stabilization provided by this surfactant is studied by rheology. The measurements were carried out on sterically stabilized polystyrene (PS) and poly(methyl methacrylate) (PMMA) containing adsorbed surfactant (INUTEC SP1). Steady-state shear stress as a function of shear rate curves was established at various latex volume fractions. The viscosity volume fraction curves were compared with those calculated using the Doughtry-Krieger equation for hard sphere dispersions. From the experimental eta r-phi curves the effective volume fraction of the latex dispersions could be calculated and this was used to determine the adsorbed layer thickness Delta. The value obtained was 9.6 nm, which is in good agreement with that obtained using atomic force microscopy (AFM). Viscoelastic measurements of the various latex dispersions were carried out as a function of applied stress (to obtain the linear viscoelastic region) and frequency. The results showed a change from predominantly viscous to predominantly elastic response at a critical volume fraction (phi c). The effective critical volume fraction, phi eff, was calculated using the adsorbed layer thickness (Delta) obtained from steady-state measurements. For PS latex dispersions phi eff was found to be equal to 0.24 whereas for PMMA phi eff=0.12. These results indicated a much softer interaction between the latex dispersions containing hydrated polyfructose loops and tails when compared with latices containing poly(ethylene oxide) (PEO) layers. The difference could be attributed to the stronger hydration of the polyfructose loops and tails when compared with PEO. This clearly shows the much stronger steric interaction between particles stabilized using hydrophobically modified inulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号