首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Adsorption equilibrium experiments of phenol on the NKA II resin are separately conducted in the presence and absence of ultrasound at ambient temperature.The isotherm of phenol on the polymer adsorbent in the presence of ultrasonic field is firstly reported.Results indicated that the isotherm of phenol determined in the presence of ultrasound is lower than that in the absence of ultrasound.In addition,experiments also show that the use of ultrasound to the adsorption system of the phenol aqueous solution and NKA Ⅱ resin could cause the rising of the temperature of the system in the order of 6^-C.The effect of ultrasound on the isotherm of the phenol on the NKA Ⅱ resin mostly ascribes to the thermal effect and the non-thermal effect of ultrasonic field.and the role of the later is greater than that of the former.  相似文献   

2.
Much effort has been dedicated to the molecular design and synthesis of model proteins to define protein folding interactions and to develop protein-based materials. Among them, the ring-opening polymerization of -amino acid-N-carboxyanhy- drides (NCAs) has drawn much attention because the resulting artificial polypeptides have wide applications in biotechnology, biomineralization and diagnostics1, 2. It is well known that dendrimers are hyperbranched macromolecules possessing a very high co…  相似文献   

3.
The activation energy is the minimum amount of energy required to initiate a reaction. It is one of the important indexes for appraising a reaction. The chemical reaction rate is closely related to the value of activation energy, and reducing activation energy is propitious to promoting a chemical reaction. In the present paper, the relationship between the activation energy in Si-KOH reaction system and the ultrasound frequency and power has been discussed for the first time. The range of ultrasound frequency and power is 40-100kHz (interval by 20kHz) and 10-50W (interval by 10W), respectively. The experimental clata indicate that the activation energy decreases with the increasing ultrasound power. Comparing with the activation energy without ultrasound irradiation, the results in our paper indicate that ultrasound irradiation could reduce the activation energy in Si-KOH reaction system and increase the reaction rate.  相似文献   

4.
This work presents a promising clinical molecular diagnostics for early stage lung cancer. This novel diagnostic method utilized the loop-mediated isothermal amplification (LAMP), microfluidic chips and a confocal optical detector with a non-linear fluorescent filter processor. An isothermal amplification based microfluidic chip for the early diagnostics of lung cancer was developed and a confocal optical detector was improved by a novel real-time fluorescent filter to sensitively monitor the DNA amplification procedure with high signal to noise ratio and fluorescence collecting ability. Experiment showed that a rapid diagnostic of lung cancer by detecting the existence of the CEA mRNA could be performed in only 5 μL of reaction assay in less than 45 min. While the traditional in-tube RT-PCR set consumed more than 25 μL of the assay and took more than 90 min.  相似文献   

5.
Li  Xiang  Yao  Dongbao  Zhou  Junxiang  Zhou  Xiang  Sun  Xianbao  Wei  Bing  Li  Chengxu  Zheng  Bin  Liang  Haojun 《中国科学:化学(英文版)》2020,63(1):92-98
Signal amplification is an important issue in DNA nanotechnology and molecular diagnostics. In this work, we report a strategy for the catalytic self-assembly of spherical nucleic acids(SNAs) programmed by two-layer cascaded DNA circuits through integrating an entropy-driven catalytic network, a catalytic hairpin assembly circuit, and a facile SNA assembly-based reporter system. This integrated system could implement ~100,000-fold signal amplification in the presence of 1 p M of input target.Possessing powerful amplification ability of nucleic acid signal, our strategy should be of great potential in fabricating more robust dynamic networks to be applied for signal transduction, DNA computing, and nucleic acid-based diagnostics.  相似文献   

6.
During the period of the post-glacial transgression maximum (PGTM), there was a huge trumpet estuary in the modern Changjiang River Delta area. The location and the shape of the Paleo-Changjiang River Estuary (PCRE) were much different from those of the present Chang-Jiang River Estuary. The study on the change of characteristics of tidal wave in the Changjiang River mouth area since the PGTM can help to understand better the dynamic development of the Changjiang River Delta. The course curves of tidal level and tidal current velocity during a single tidal cycle for 35 points are calculated, and characteristics of tidal waves in the PCRE and its adjacent area are compared with those of tidal waves in the modern Changjiang River mouth area. The results show that the tidal waves within the PCRE and in its adjacent area during the period of the PGTM belonged to standing wave or a mixture of standing wave and progressive wave. Since then, the tidal wave in the Changjiang River mouth become gradually to be pr  相似文献   

7.
Triazole derivatives are widely studied, because they represent the largest group of modern fungicides and are widely used both in human and veterinary therapy and in agriculture. We synthesized the title compound in which the thiophene ring was substituted by a 1,2,4-triazole group, a phenacyl group, a phenylaminol group and a benzene ring.  相似文献   

8.
Noninvasive ultrasound is more convenient and easily accessible for controlled drug delivery of polymeric nanoparticles than many other stimuli.However,controlled ultrasound responsiveness is rather challenging as the mechanism is still unclear.In this article,we disclose the origin and the key regulating factors of ultrasound responsiveness of block copolymer nanoparticles such as simple vesicles,framboidal vesicles,lamellae,beads-like micelles and complex micelles that are self-assembled from a range of poly(ethylene oxide)-b-polymethacrylates based model copolymers.We discover that the intrinsic ultrasound responsiveness of block copolymer nanoparticles thermodynamically originates from their metastable states,and its expression kinetically relates to the mobility of the hydrophobic segments of block copolymers.Specifically,the self-assembly temperature(Ts) that has been usually considered as a less important factor in most of macromolecular self-assembly systems,and the solvents for the selfassembly are two dominant regulating factors of the ultrasound responsiveness because they determine the thermodynamic state(metastable or stable) of nanoparticles.For example,simple vesicles with good or excellent ultrasound responsiveness can be prepared in THF/water when the Tsis around or slightly below the glass transition temperature(Tg) of the hydrophobic segment of the block copolymer because the combination of this solvent with this Tsfacilitates the formation of metastable vesicles.By contrast,thermodynamically stable solid nanoparticles such as spherical micelles and lamellae(mainly formed in DMF/water)are not sensitive to ultrasound at all,neither are the vesicles in THF/water at stable states when the Tsis highly above Tg.In addition,we unravel that the responsive rate is highly dependent on the sonication temperature(Tu),i.e.,the higher the Tu,the faster the rate.Overall,the above important findings provide us with a fresh insight into how to design ultrasound-responsive nanoparticles and may open new avenues for synthesizing translational noninvasively responsive drug carriers.  相似文献   

9.
Shape and size of a molecule are the most fun-damental concepts in modern chemistry, and its appli-cations, especially about molecular surface area and molecular volume, are numerous in many fields[1—10]. Most properties of a molecule, including the proc…  相似文献   

10.
<正>Science is a human enterprise in the pursuit of knowledge.The scientific revolution that occurred in the 17th Century initiated the advances of modern science.The scientific knowledge system created by human beings,the tremendous productivity brought about by science,and the spirit,methodologies and norms formulated in scientific practice since the 17th Century have long become essential elements of modern civilization.Today's world is characterized by rapid knowledge expansion,an explosion of data  相似文献   

11.
As a novel ultrasound diagnostic contrast agent, the preparation, characterization and ultrasound imaging in the body of dog about poly(lactic acid) (PLLA) microcapsules have been studied. The behavior of this kind of contrast agent in the microcirculation was also investigated. Prepared by (water/oil/water) emulsion-solvent evaporation protocol, the PLLA microcapsules with hollow structure can enhance the ultrasound image both in vitro and in vivo, and the enduring time can last as long as 3 h. The microcirculation examination shows that the PLLA microcapsules with a diameter ranging from 2 to 8 μm could pass through the pulmonary capillaries without retention. All the results prove the PLLA microcapsules for potential use for the clinical application.  相似文献   

12.
Hollow polylactide microcapsules that can be used as ultrasound contrast agents were prepared using premix membrane emulsification. Polylactide/dichloromethane and dodecane solutions were emulsified together with a nonsolvent phase (water or a water–alcohol mixture) by repeated passage through a glass fibre membrane. The solvent, dichloromethane, diffuses out of the droplets and the polylactide solidifies around a droplet of dodecane. To investigate the effect of the nonsolvent properties on the size and span of the microcapsules, different methanol–water, ethanol–water and 2-propanol–water mixtures were used as nonsolvents.  相似文献   

13.
双重乳液/溶剂蒸发法制备超声造影微泡   总被引:1,自引:0,他引:1  
通过水包油包水(W1/O/W2)双重乳液的油相溶剂蒸发过程, 制备了聚左旋乳酸(PLLA)微泡, 结合扫描电子显微镜(SEM)、激光共聚焦显微镜(LCSM)和粒度分析(PSA)等表征手段, 研究了外水相乳化剂的种类、浓度、两次乳化的水油比、均质机转速等参数对微泡性能的影响. 研究结果表明, 聚乙烯醇(PVA)是该体系外水相有效的乳化剂; 通过调节PVA水溶液的浓度或第二次乳化时均质机转速, 能有效地控制微泡的平均粒径(1~10 μm); 第一次乳化的水油比是微泡空心率的重要影响因素. 对微泡负压充气后, 进行体外超声显影检测, 证明该微泡具有较好的超声造影增强效果.  相似文献   

14.
In this study, porous poly(L-lactic acid) (PLLA) films are prepared via a facile and low-cost approach using poly(ethylene glycol) (PEG) and solution casting. In contrast to most studies, the PEG/PLLA samples are further processed under different crystallization conditions (i.e., different PLLA crystallization temperatures) before PEG removal. As the PEG is extracted via solvent at higher PLLA crystallization temperatures, the resultant PLLA samples have larger pores. Interconnected fibrillar-shaped pores are found in all systems, and the fibrillar-porous structure width is ~150 nm–1.2 μm, as observed via scanning electron microscopy. These pore sizes can be tuned by adjusting the blend composition and crystallization temperature. In addition, PEG/PLLA blends are subjected to hydrolytic degradation analysis according to their crystallization conditions. Higher PLLA crystallization temperature yields higher PLLA crystallinity and larger pores, as well as reduced surface interaction with water. Therefore, the PLLA degradation rate is decreased. The developed PLLA films have potential applications in drug delivery and tissue engineering.  相似文献   

15.
A newly synthesized aromatic sulfonate compound,complex 2 with formula of K2[H3COOC-C6H3(SO3)2]·2H2O(methyl 3,5-disulfo-benzoate dipotassium dihydrate) was synthesized and characterized by elemental analysis,infrared(IR) spectrometry,nuclear magnetic resonance(NMR) and crystal structure measurement.Single-crystal X-ray diffraction(XRD) revealed that complex 2 crystallized in the triclinic system with space group P(i).Complex 2 was used as nucleating agent for poly(L-lactide)(PLLA).The crystallization of PLLA with powder of complex 2 was investigated by means of differential scanning calorimetry(DSC) and polarized optical microscopy (POM).The results prove that complex 2 was effective as nucleating agent for PLLA.It could accelerate crystallization by reducing the induction time and increasing the density of nuclei in the crystallization process.The half-time of crystallization(t0.5) for pure PLLA was about 8 times longer than that of PLLA sample with 1.0%(mass fraction) of complex 2.  相似文献   

16.
Thermal expansion microcapsules were prepared by using acrylonitrile and methyl methacrylate as polymerization monomer and isooctane as the blowing agent. The structure, composition, appearance, and thermal expansion properties of microcapsules were analyzed by SEM, FTIR, TG, DSC, and TEM. The cell structure and surface quality of PP foaming composites were characterized by SEM, optical microscopy, and gloss meter. Results show that sodium chloride in the aqueous solution can significantly improve the appearance of microcapsules. At 15.1 and 19.1?wt.% sodium chloride, the appearance of microcapsules was regular. At 19.1?wt.% sodium chloride, the thermal expansion microcapsules were coated with 25.0?wt.% of the blowing agent. The microcapsules exhibit an expansion temperature of 201?°C and can remain stable after expansion. Moreover, the microcapsule shell of the data (thickest part???thinnest part)/(core diameter) decreased to approximately 0.05. The glossiness of PP/(T-5) increased to 65.6. The surface of PP/microcapsule foaming composite is smoother than that of the PP/AC foaming composites, and the pores of thermal expansion microcapsules are difficult to deform during processing.  相似文献   

17.
A binary poly(L ‐lactide)/poly(ε‐caprolactone) (PLLA/PCL) (70/30 w/w) blend and a ternary PLLA/PCL/PLLA‐PCL‐PLLA blend of the same composition which contains 4 wt.‐% of a triblock PLLA‐PCL‐PLLA copolyester as compatibilizing agent were prepared by melt mixing at 200°C. Investigation of the thermal and mechanical properties of the blends and scanning electron microscopy of their fracture surfaces showed in the case of the ternary blend a better state of dispersion of PCL in the PLLA matrix and an improved toughness.  相似文献   

18.
Uniform-sized biodegradable PLA/PLGA microcapsules loading recombinant human insulin (rhI) were successfully prepared by combining a Shirasu Porous Glass (SPG) membrane emulsification technique and a double emulsion-evaporation method. An aqueous phase containing rhI was used as the inner water phase (w1), and PLA/PLGA and Arlacel 83 were dissolved in a mixture solvent of dichloromethane (DCM) and toluene, which was used as the oil phase (o). These two solutions were emulsified by a homogenizer to form a w1/o primary emulsion. The primary emulsion was permeated through the uniform pores of a SPG membrane into an outer water phase by the pressure of nitrogen gas to form the uniform w1/o/w2 droplets. The solid polymer microcapsules were obtained by simply evaporating solvent from droplets. Various factors of the preparation process influencing the drug encapsulation efficiency and the drug cumulative release were investigated systemically. The results indicated that the drug encapsulation efficiency and the cumulative release were affected by the PLA/PLGA ratio, NaCl concentration in outer water phase, the inner water phase volume, rhI-loading amount, pH-value in outer water phase and the size of microcapsules. By optimizing the preparation process, the drug encapsulation efficiency was high up to 91.82%. The unique advantage of preparing drug-loaded microcapsules by membrane emulsification technique is that the size of microcapsules can be controlled accurately, and thus the drug cumulative release profile can be adjusted just by changing the size of microcapsules. Moreover, much higher encapsulation efficiency can be obtained when compared with the conventional mechanical stirring method.  相似文献   

19.
The star-shaped organic/inorganic hybrid poly(l-lactide) (PLLA) based on polyhedral oligomeric silsesquioxane (POSS) was prepared using octa(3-hydroxypropyl) polyhedral oligomeric silsesquioxane as initiator via ring-opening polymerization (ROP) of l-lactide (LLA). The molecular weight of POSS-containing star-shaped hybrid PLLA (POSSPLLA) can be well controlled by the feed ratio of LLA to initiator. The POSSPLLA was further functionalized into the macromolecular reversible addition-fragmentation transfer (RAFT) agent for the polymerization of N-isopropylacrylamide (NIPAM), leading to the POSS-containing star-shaped organic/inorganic hybrid amphiphilic block copolymers, poly(l-lactide)–block–poly(N-isopropylacrylamide) (POSS(PLLA–b–PNIPAM)). The self-assembly behavior of POSS(PLLA–b–PNIPAM) block copolymers in aqueous solution was investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM) and atomic force microscopy (AFM). DLS showed the PNIPAM block in the aggregates is temperature-responsive and its phase-transition is reversible. TEM proved that the star-shaped POSS(PLLA–b–PNIPAM) amphiphilic block copolymers can self-assemble into the vesicles in aqueous solution. The vesicular wall and coronas are composed of the hydrophobic POSS core and PLLA, and hydrophilic PNIPAM blocks, respectively. Therefore, POSSPLLA and POSS(PLLA–b–PNIPAM) block copolymers, as a class of novel organic–inorganic hybrid materials with the advantageous properties, can be potentially used in biological and medical fields.  相似文献   

20.
The aim of the article was to develop stable and safe eco-friendly microcapsules and evaluate their physicochemical properties and their efficiency to protect a jackfruit extract. Eco-friendly microcapsules were produced by ultrasound and spray drying using only three safe ingredients: sucrose ester (SE), miglyol and maltodextrin (DE = 10). Some physicochemical properties, particle morphology, FT-IR, differential scanning calorimetry and antiproliferative activity were determined for microcapsules loaded or not with the jackfuit extract. The results revealed that the encapsulation process by spray drying produced stable microcapsules, with adequate physicochemical and fluid properties for a powder product. The cell viability on the proliferation of M12.C3.F6 cell line was not affected by powder microcapsules without jackfruit extract, indicating that capsules are not toxic for these cells. However, microcapsules with jackfruit extract (100 μg/ml) were able to inhibit significantly the proliferation of M12.C3.F6 cells. These microcapsules can be used for the protection of different compounds sensitive to light, oxygen and/or heat and displaying a very low aqueous solubility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号