首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Chemical shift referencing in MAS solid state NMR   总被引:7,自引:0,他引:7  
Solid state 13C magic angle spinning (MAS) NMR spectra are typically referenced externally using a probe which does not incorporate a field frequency lock. Solution NMR shifts on the other hand are more often determined with respect to an internal reference and using a deuterium based field frequency lock. Further differences arise in solution NMR of proteins and nucleic acids where both 13C and 1H shifts are referenced by recording the frequency of the 1H resonance of DSS (sodium salt of 2,2-dimethyl-2-silapentane-5-sulphonic acid) instead of TMS (tetramethylsilane). In this note we investigate the difficulties in relating shifts measured relative to TMS and DSS by these various approaches in solution and solids NMR, and calibrate adamantane as an external 13C standard for solids NMR. We find that external chemical shift referencing of magic angle spinning spectra is typically quite reproducible and accurate, with better than +/-0.03 ppm accuracy being straight forward to achieve. Solid state and liquid phase NMR shifts obtained by magic angle spinning with external referencing agree with those measured using typical solution NMR hardware with the sample tube aligned with the applied field as long as magnetic susceptibility corrections and solvent shifts are taken into account. The DSS and TMS reference scales for 13C and 1H are related accurately using MAS NMR. Large solvent shifts for the 13C resonance in TMS in either deuterochloroform or methanol are observed, being +0.71 ppm and -0.74 ppm from external TMS, respectively. The ratio of the 13C resonance frequencies for the two carbons in solid adamantane to the 1H resonance of TMS is reported.  相似文献   

2.
The 13C NMR solution spectra of 30-crown-10 ether and its tetrahydrate show only one resonance at all accessible temperatures. In contrast, the solid state 13C NMR spectrum of the 30-crown-10.4H2O shows two resonances in the ratio of 4:1, separated by 1.2 ppm. In the case of 30-crown-10 itself, six resolvable 13C resonances in the ratio of 4:1:1:2:1:1 are observed in the solid with an overall chemical shift dispersion of 5 ppm. The remarkably different spectral behavior of these two systems in the solid state is discussed in terms of the torsional environments of the crystallographically unique carbons and the results of GIAO calculations of isotropic 13C shieldings for simpler model compounds. Results of dipolar dephased 13C CPMAS spectra indicate that 30-crown-10 does not undergo a large amplitude molecular motion, in contrast to earlier results for 18-crown-6. Only a small amount of residual intensity is found in the dipolar dephased spectrum of 30-crown-10.4H2O, indicating that it also is relatively rigid in the solid.  相似文献   

3.
通过对香豆素343(C343)在不同溶剂中的稳态吸收光谱、稳态荧光光谱和时间分辨荧光光谱的分析,研究了溶剂对C343的光谱性质的影响,并获得了光谱特性与溶剂极性之间的依赖关系. 吸收光谱峰值的红移随着溶剂极性的增加而发生较小的变化. 然而,荧光光谱的峰值对溶剂的极性却很敏感,并随着溶剂极性参数f(ε,n)的增加呈线性增长. 这是由于C343激发态电荷分布的变化导致了它在极性溶剂中第一激发单重态能级的变化. 用溶剂效应测量法和量子化学计算方法确定了C343最低激发态的偶极矩,这两方法所得的结果一致. C343在不同溶剂中的时间分辨荧光光谱研究表明荧光寿命随着溶剂极性的增加而增加,即从甲苯溶液的3.09 ns线性地增加到水溶液中4.45 ns;荧光寿命延长的根源可归因于C343与氢键给体溶剂之间的分子间氢键相互作用.  相似文献   

4.
We have studied magneto-photoluminescence (PL) spectra of a single carbon nanotube at low temperatures. A single PL peak arising from optically allowed (bright) exciton state was observed under the zero-magnetic field, and an additional PL peak from optically forbidden (dark) exciton state was enhanced with increasing the magnetic field. Excitons populate in the lower dark state at low temperatures, and the optically forbidden transition is observed due to the Aharonov-Bohm effect.  相似文献   

5.
We describe investigations of the effects of rotational resonance (R(2)) on solid state (13)C NMR spectra of uniformly (13)C-labeled samples obtained under magic-angle spinning (MAS), and of the utility of R(2) measurements as structural probes of peptides and proteins with multiple uniformly labeled residues. We report results for uniformly (13)C-labeled L-alanine and L-valine in polycrystalline form, and for amyloid fibrils formed by the 15-residue peptide A beta(11-25) with uniform labeling of a four-residue segment. The MAS NMR spectra reveal a novel J-decoupling effect at R(2) conditions that may be useful in spectral assignments for systems with sharp (13)C MAS NMR lines. Pronounced dependences of the apparent isotropic (13)C NMR chemical shifts on MAS frequency near R(2) conditions are also observed. We demonstrate the feasibility of quantitative (13)C-(13)C distance determinations in L-valine, and qualitative determinations of inter-residue (13)C-(13)C contacts in A beta(11-25) fibrils. Finally, we demonstrate a "relayed" R(2) technique that may be useful in structural measurements on systems with poorly resolved (13)C MAS NMR lines.  相似文献   

6.
The experimental 1H and 13C NMR spectra of 13 phenyl cinnamates and four 4‐methylcoumarins were investigated and their chemical shifts assigned on the basis of the two‐dimensional spectra. For the unsubstituted cinnamic acid phenyl ester, optimized molecular structures were calculated at a B3LYP/6‐311++G(d,p) level of theory. 1H and 13C NMR chemical shifts were also calculated with the GIAO method at the B3LYP/6‐311 + G(2d,p) level of theory. The comparison between experimental and calculated NMR chemical shift suggests that the experimental spectra are formed from the superposition spectra of the two lowest energy conformers of the compound in solution. The most stable s‐cis configuration found in our studies is also the conformation adopted for a related phenyl cinnamate in solid state. The experimental results were analyzed in terms of the substituent effects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
(13)C cross polarization magic angle spinning (CP-MAS) and (1)H MAS NMR spectra were collected on egg sphingomyelin (SM) bilayers containing cholesterol above and below the liquid crystalline phase transition temperature (T(m)). Two-dimensional (2D) dipolar heteronuclear correlation (HETCOR) spectra were obtained on SM bilayers in the liquid crystalline (L(alpha)) state for the first time and display improved resolution and chemical shift dispersion compared to the individual (1)H and (13)C spectra and significantly aid in spectral assignment. In the gel (L(beta)) state, the (1)H dimension suffers from line broadening due to the (1)H-(1)H homonuclear dipolar coupling that is not completely averaged by the combination of lipid mobility and MAS. This line broadening is significantly suppressed by implementing frequency switched Lee-Goldburg (FSLG) homonuclear (1)H decoupling during the evolution period. In the liquid crystalline (L(alpha)) phase, no improvement in line width is observed when FSLG is employed. All of the observed resonances are assignable to cholesterol and SM environments. This study demonstrates the ability to obtain 2D heteronuclear correlation experiments in the gel state for biomembranes, expands on previous SM assignments, and presents a comprehensive (1)H/(13)C NMR assignment of SM bilayers containing cholesterol. Comparisons are made to a previous report on cholesterol chemical shifts in dimyristoylphosphatidylcholine (DMPC) bilayers. A number of similarities and some differences are observed and discussed.  相似文献   

8.
High-resolution solid-state 13C NMR spectra of histidine powder samples prepared from solutions at several pH values near the pKa of the imidazole group are presented. These spectra demonstrate several effects due to the titration of the imidazole group. The chemical shifts for all of the carbon sites change upon titration. They are in “slow exchange” in the solid state in contrast to the “fast exchange” behavior seen in solution. Changes in the quadrupole interactions in the 14N sites occur upon titration and are observed by their effects on the resonance lineshapes of the 13C sites to which they are bonded.  相似文献   

9.
Solid state 33S NMR spectra of a variety of inorganic sulfides have been obtained at magnetic field strengths of 4.7 and 17.6T. Spectra acquired with magic angle spinning show considerable improvements in sensitivity and resolution when compared with static spectra. Multiple factors are considered when analyzing the spectral line widths, including; magnetic field inhomogeneity, dipolar coupling, chemical shift anisotropy, chemical shift dispersion (CSD), T(2) relaxation, and quadrupolar coupling. Quadrupolar coupling was expected to be the dominant line broadening mechanism. However, for most of the samples CSD was the prevailing line broadening mechanism. Thus, for many of the metal sulfides studied at a high magnetic field strength, the line widths were actually larger than those observed in the spectra at low field. This is atypical in solid state 33S NMR. Solid state 33S spin-lattice (T(1)) and spin-spin (T(2)) relaxation rates were measured for the first time and are discussed. This information will be useful in future efforts to use 33S NMR in the compositional and structural analysis of sulfur containing materials.  相似文献   

10.
In this communication, we report enhancements of nuclear spin polarization by dynamic nuclear polarization (DNP) in static and spinning solids at a magnetic field strength of 9T (250 GHz for g=2 electrons, 380 MHz for 1H). In these experiments, 1H enhancements of up to 170+/-50 have been observed in 1-13C-glycine dispersed in a 60:40 glycerol/water matrix at temperatures of 20K; in addition, we have observed significant enhancements in 15N spectra of unoriented pf1-bacteriophage. Finally, enhancements of approximately 17 have been obtained in two-dimensional 13C-13C chemical shift correlation spectra of the amino acid U-13C, 15N-proline during magic angle spinning (MAS), demonstrating the stability of the DNP experiment for sustained acquisition and for quantitative experiments incorporating dipolar recoupling. In all cases, we have exploited the thermal mixing DNP mechanism with the nitroxide radical 4-amino-TEMPO as the paramagnetic dopant. These are the highest frequency DNP experiments performed to date and indicate that significant signal enhancements can be realized using the thermal mixing mechanism even at elevated magnetic fields. In large measure, this is due to the high microwave power output of the 250 GHz gyrotron oscillator used in these experiments.  相似文献   

11.
13C cross-polarization (CP) magic angle spinning (MAS) solid state NMR spectra of hydrochlorides and perchlorates of buspirone analogues (2-5) were recorded. In the spectra for each compound, one set of signals appeared, in agreement with single crystal X-ray diffraction data indicating the presence of one molecule per crystal unit. The resonances of 2-5 hydrochlorides were assigned by comparison with the solution chemical shifts. For perchlorate 2b and diperchlorate 2c, the reasonable assignment of signals was made with the aid of the theoretical studies. Ab initio calculations of the carbon shieldings were performed by means of the GIAO-CHF method for two model systems: perchlorate and diperchlorate of quinoline-(N-methyl)piperazine. As no remarkable differences between carbon chemical shifts of hydrochlorides 3-5 in solid state and in solution were observed, it was concluded that in solution these compounds adopted the same conformation as in the solid state.  相似文献   

12.
17O static and magic angle spinning NMR spectra are reported from three crystalline cyclic titanodiphenylsiloxanes at magnetic fields of 5.6, 14.1, and 17.6 T. These compounds allow the NMR parameters characteristic of Ti-O-Si environments to be determined. It appears from these data that the quadrupole interaction (C(Q)) of such environments is in the range of 3-3.5 MHz and that Si-O-TiO3 sites are less shifted than Si-O-TiO5. The relatively large isotropic chemical range observed suggests that for structurally and atomically disordered titanosilicate-based materials the very highest applied magnetic field may not produce the best 17O solid state NMR spectra. There appears to be a correlation between the 17O shift and Ti-O bondlength.  相似文献   

13.
We report on a novel peak, the F-line, observed in photoluminescence spectra of GaAs/AlGaAs quantum wells (QWs) with various donor layer positions and concentrations. The F-line is well-defined and red shifted by approximately 1.3 meV (dependent on the experimental conditions) relatively the free exciton (FE) in a 200 Å wide QW. The F-line exhibits a strong magnetic field dependence. The enhanced intensity with increasing field is due to an increasing wave function overlap caused by the enhanced localization of the involved charge carriers. In accordance, the derived thermal activation energy for the F-line is magnetic field dependent. The F-line exhibits a diamagnetic shift as expected for an excitonic transition and splits into four components with increasing magnetic field. Another associated higher energy peak, the E-line, is observed preferably in the presence of a magnetic field, between the heavy hole- and light hole-FE in PL excitation spectra. The E-line also exhibits a striking magnetic field and temperature dependence. The observed properties of the F-line with a striking dependence on the excitation intensity, magnetic field and temperature are consistent with the observation of an exciton bound at the negatively charged D- donor state or a negatively charged X- exciton.  相似文献   

14.
Solid-state (33)S MAS NMR spectra of a variety of inorganic sulfates have been obtained at magnetic field strengths of 4.7, 14.1, 17.6, and 18.8 T. Some of the difficulties associated with obtaining natural abundance (33)S NMR spectra have been overcome by using a high magnetic field strength and magic angle spinning (MAS). Multiple factors were considered when analyzing the spectral linewidths, including magnetic field inhomogeneity, dipolar coupling, chemical shift anisotropy, chemical shift dispersion, and quadrupolar coupling. In most of these sulfate samples, quadrupolar coupling was the dominant line broadening mechanism. Nuclear electric quadrupolar coupling constants (C(q)) as large as 2.05 MHz were calculated using spectral simulation software. Spectral information from these new data are compared with X-ray measurements and GAUSSIAN 98W calculations. A general correlation was observed between the magnitude of the C(q) and the increasing difference between S-O bond distances within the sulfate groups. Solid-state (33)S spin-lattice (T(1)) relaxation times were measured and show a significant reduction in T(1) for the hydrated sulfates. This is most likely the result of the modulation of the time-dependent electric field gradient at the nuclear site by motion of water molecules. This information will be useful in future efforts to use (33)S NMR in the compositional and structural analysis of sulfur containing materials.  相似文献   

15.
Solid-state (33)S MAS NMR spectra of a variety of inorganic sulfates have been obtained at magnetic field strengths of 4.7, 14.1, 17.6, and 18.8 T. Some of the difficulties associated with obtaining natural abundance (33)S NMR spectra have been overcome by using a high magnetic field strength and magic angle spinning (MAS). Multiple factors were considered when analyzing the spectral linewidths, including magnetic field inhomogeneity, dipolar coupling, chemical shift anisotropy, chemical shift dispersion, and quadrupolar coupling. In most of these sulfate samples, quadrupolar coupling was the dominant line broadening mechanism. Nuclear electric quadrupolar coupling constants (C(q)) as large as 2.05 MHz were calculated using spectral simulation software. Spectral information from these new data are compared with X-ray measurements and GAUSSIAN 98W calculations. A general correlation was observed between the magnitude of the C(q) and the increasing difference between S-O bond distances within the sulfate groups. Solid-state (33)S spin-lattice (T(1)) relaxation times were measured and show a significant reduction in T(1) for the hydrated sulfates. This is most likely the result of the modulation of the time-dependent electric field gradient at the nuclear site by motion of water molecules. This information will be useful in future efforts to use (33)S NMR in the compositional and structural analysis of sulfur containing materials.  相似文献   

16.
Carbon-13 CP/MAS spectra have been obtained for seven polymorphic and solvated forms of cortisone acetate. For signals in the high-frequency region, the spinning sideband manifolds of the spectra recorded under slow-spinning conditions have been analysed to obtain the shielding tensor components for the five resonances at the highest frequency. These show characteristic values for given types of carbon and have enabled assignments of the C5 and C22 signals to be made with some certainty, providing firm evidence of cross-over between the shifts for these carbons between different polymorphs. Assignments are suggested more tentatively for the resonances from C3, C11 and C20. Comparison of chemical shifts for those forms with published X-ray structures enables conclusions to be drawn regarding hydrogen bonding in the remaining forms. Hydrogen bonding induces a high-frequency change in the isotropic chemical shift of approximately 3 ppm.  相似文献   

17.
We report absorption and first reliable photoluminescence (PL) studies at various temperatures on relatively thick films of the basic polyazomethine — PPI, i.e., poly(1,4-phenylene-methylidynenitrilo-1,4-phenylenenitrilomethylidine), prepared by chemical vapor deposition (CVD). Both absorption and PL spectra exhibit the vibronic progression due to the C–C stretching mode, characteristic for conjugated polymers. The absorption spectra appear to be practically temperature independent, in contrast to PL spectra, the intensity of which strongly decreases with increasing temperature. The origin of generally weak photoluminescence of PPI is suggested to be the result of a non-radiative electronic state occupied by the lone electron pair on the nitrogen orbital.  相似文献   

18.
In this work, the experimental and theoretical UV, NMR and vibrational spectra of 2-chloro-6-methylaniline (2-Cl-6-MA, C7H8NCl) were studied. The ultraviolet absorption spectra of compound that dissolved in ethanol were examined in the range of 200–400 nm. The 1H, 13C and DEPT NMR spectra of the compound were recorded. FT-IR and FT-Raman spectra of 2-Cl-6-MA in the liquid phase were recorded in the region 4000–400 cm?1 and 3500–50 cm?1, respectively. The structural and spectroscopic data of the molecule in the ground state were calculated using density functional theory (DFT) employing B3LYP exchange correlation and the 6-311++G(d,p) basis set. The vibrational frequencies were calculated and scaled values were compared with experimental FT-IR and FT-Raman spectra. The observed and calculated frequencies were found to be in good agreement. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Isotropic chemical shifts were calculated using the gauge-invariant atomic orbital (GIAO) method. Comparison of the calculated NMR chemical shifts and absorption wavelengths with the experimental values revealed that DFT method produces good results.  相似文献   

19.
本文测定了三个3(或4)-取代苯甲亚氨酸乙酯(1)和八个N-氰甲基-3(或4)-取代苯甲亚氨酸乙酯(2)的~(13)C-NMR谱。归属了1 和2和各碳化学位移。求得了的取代基化学位移(substituent Chemical Shift,SCS)。碳-13化学位移与单取代苯的取代基化学位移(SCS)的相关分析表明:4-取代苯甲亚氨酸酯1 b~g和2b~e中,除C_(2,6)外,其他各芳碳的化学位移值与加和规则基本相符;3-取代苯甲亚氨酸酯1h~j和2f~h中,除C_1外,其他各芳碳的化学位移值与加和规则基本相符。另外,本文还进行了碳-13化学位移与σ_(I)/σ_(R)~O和F/M的双参数相关分析。  相似文献   

20.
Photoluminescent (PL) p-type 6H porous silicon carbides (PSCs), which showed a strong blue-green photoluminescence band centered at approximately 490 nm, were annealed in Ar and vacuum conditions. The morphological, optical, and chemical states after annealing are reported on electrochemically etched SiC semiconductors.The thermal treatments in the Ar and vacuum environments showed different trends in the PL spectra of the PSC. In particular, in the case of annealing in a vacuum, the PL spectra showed both a weak red PL peak near 630 nm and a relatively intense PL peak at around 430 nm in the violet region. SEM images showed that the etched surface had spherical nanostructures, mesostructures, and islands. With increasing annealing temperature it changes all spherical nanostructures. The average pore size observed at the surface of the PSC before annealing was of the order of approximately 10 nm.In order to investigate the surface of a series of samples in detail, both the detection of a particular chemical species and the electronic environments at the surface are examined using X-ray photoelectron spectroscopy (XPS). The chemical states from each XPS spectrum depend differently before and after annealing the surface at various temperatures. From these results, the PL spectra could be attributed not only to the quantum size effects but also to the oxide state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号