首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Zhang Y  Poonja S  Roorda A 《Optics letters》2006,31(9):1268-1270
We have developed a compact, robust adaptive optics (AO) scanning laser ophthalmoscope using a microelectromechanical (MEMS) deformable mirror (DM). Facilitated with a Shack-Hartmann wavefront sensor, the MEMS-DM-based AO operates a closed-loop modal wave aberration correction for the human eye and reduces wave aberrations in most eyes to below 0.1 microm rms. Lateral resolution is enhanced, and images reveal a clear cone mosaic near the foveal center. The significant increase in throughput allows for a confocal pinhole whose diameter is less than the Airy disc of the collection lens, thereby fully exploiting the axial resolution capabilities of the system.  相似文献   

2.
自适应光学系统随机并行梯度下降控制算法实验研究   总被引:10,自引:3,他引:7  
随机并行梯度下降算法是一种极具应用潜力的自适应光学系统控制算法,具有不依赖波前传感器直接对系统性能指标进行优化的特点。基于32单元变形镜、CCD成像器件等建立自适应光学系统随机并行梯度下降控制算法实验平台。考察算法增益系数和扰动幅度对校正效果和收敛速度的影响,验证随机并行梯度下降算法的基本原理。实验结果表明参量选取合适的情况下,随机并行梯度下降控制算法对静态或慢变化的畸变波前具有较好的校正能力。根据实验结果分析了影响随机并行梯度下降算法校正速度的主要因素。  相似文献   

3.
In order to obtain a clear image of the retina of model eye, an adaptive optics system used to correct the wave-front error is introduced in this paper. The spatial light modulator that we use here is a liquid crystal on a silicon device instead of a conversional deformable mirror. A paper with carbon granule is used to simulate the retina of human eye. The pupil size of the model eye is adjustable (3--7mm). A Shack-Hartman wave-front sensor is used to detect the wave-front aberration. With this construction, a value of peak-to-valley is achieved to be 0.086Λ, where Λ is wavelength. The modulation transfer functions before and after corrections are compared. And the resolution of this system after correction (69lp/m) is very close to the diffraction limit resolution. The carbon granule on the white paper which has a size of 4.7μm is seen clearly. The size of the retina cell is between 4 and 10μm. So this system has an ability to image the human eye's retina.  相似文献   

4.
Adaptive optics optical coherence tomography for retina imaging   总被引:1,自引:0,他引:1  
When optical coherence tomography (OCT) is used for human retina imaging, its transverse resolution is limited by the aberrations of human eyes. To overcome this disadvantage, a high resolution imaging system for living human retina, which consists of a time domain OCT system and a 37-elements adaptive optics (AO) system, has been developed. The AO closed loop rate is 20 frames per second, and the OCT has a 6.7-μm axial resolution. In this paper, this system is introduced and the high resolution imaging results for retina are presented.  相似文献   

5.
Closed-loop adaptive optics in the human eye   总被引:3,自引:0,他引:3  
We have developed a prototype apparatus for real-time closed-loop measurement and correction of aberrations in the human eye. The apparatus uses infrared light to measure the wave-front aberration at 25 Hz with a Hartmann-Shack sensor. Defocus is removed by a motorized optometer, and higher-order aberrations are corrected by a membrane deformable mirror. The device was first tested with an artificial eye. Correction of static aberrations takes approximately five iterations, making the system capable of following aberration changes at 5 Hz. This capability allows one to track most of the aberration dynamics in the eye. Results in living eyes showed effective closed-loop correction of aberrations, with a residual uncorrected wave front of 0.1microm for a 4.3-mm pupil diameter. Retinal images of a point source in different subjects with and without adaptive correction of aberrations were estimated in real time. The results demonstrate real-time closed-loop correction of aberration in the living eye. An application of this device is as electro-optic "spectacles" to improve vision.  相似文献   

6.
Ophthalmic instrumentation equipped with adaptive optics offers the possibility of rapid and automated correction of the eye's optics for improving vision and for improving images of the retina. One factor that limits the widespread implementation of adaptive optics is the cost of the wave-front corrector, such as a deformable mirror. In addition, the large apertures of these elements require high pupil magnification, and hence the systems tend to be physically large. We present what are believed to be the first closed-loop results when a compact, low-cost, surface micromachined, microelectromechanical mirror is used in a vision adaptive-optics system. The correction performance of the mirror is shown to be comparable to that of a Xinetics mirror for a 4.6-mm pupil size. Furthermore, for a pupil diameter of 6.0-mm, the residual rms error is reduced from 0.36 to 0.12 microm and individual photoreceptors are resolved at a pupil eccentricity of 1 degrees from the fovea.  相似文献   

7.
A lensed patch cord probe has been made with a ball lens packaged in a metal cylinder. By simply placing a ball lens directly in front of a fiber patch cord, a compact and potentially disposable sampling probe for optical coherence tomography (OCT) could be implemented. To achieve a sufficiently long working distance and a good transverse resolution simultaneously, the proper ball lens diameter and the distance between the ball lens and the fiber patch cord were investigated. Experimentally, a working distance of up to 5.2 mm, 3 dB bandwidth of 2 mm, and transverse resolution of 16 μm were achieved. With the patch cord probe, a common path swept source OCT system was implemented and used to demonstrate the feasibility as the dedicated probe for dentistry.  相似文献   

8.
Xie T  Mukai D  Guo S  Brenner M  Chen Z 《Optics letters》2005,30(14):1803-1805
A fiber-optic-bundle-based optical coherence tomography (OCT) probe method is presented. The experimental results demonstrate this multimode optical fiber-bundle-based OCT system can achieve a lateral resolution of 12 microm and an axial resolution of 10 microm with a superluminescent diode source. This novel OCT imaging approach eliminates any moving parts in the probe and has a primary advantage for use in extremely compact and safe OCT endoscopes for imaging internal organs and great potential to be combined with confocal endoscopic microscopy.  相似文献   

9.
自适应光学系统几种随机并行优化控制算法比较   总被引:6,自引:2,他引:4       下载免费PDF全文
 直接对系统性能指标进行优化是自适应光学系统中一种重要的波前畸变校正方法,选择合适的随机并行优化控制算法是该技术成功实现的关键。以32单元变形镜为校正器,基于多种随机并行优化算法建立自适应光学系统仿真模型。从算法的收敛速度、校正效果、局部极值3个方面对遗传算法、单向扰动随机并行梯度下降、双向扰动随机并行梯度下降及模拟退火算法进行了比较。仿真结果表明,遗传算法收敛速度太慢,不适用于需要实时控制的自适应光学系统;双向扰动随机并行梯度下降算法收敛速度、校正效果要优于单向扰动随机并行梯度下降,且能够适应各种情况下的扰动电压;模拟退火几乎以概率1收敛到全局极值附近,且收敛速度是上述算法中最快的。  相似文献   

10.
A 37-element solar adaptive optics (AO) system was built and installed at the 26-cm solar fine structure telescope of Yunnan Astronomical Observatory. The AO system is composed of a fine tracking loop with a tip/tilt mirror and a correlation tracker, a high-order correction loop with a 37-element deformable mirror, a correlating Shack-Hartmann wavefront sensor based on the absolute difference algorithm, and a real time controller. The system was completed on Sep. 28, 2009 and was used to obtain AO-corrected high-resolution solar images. The contrast and resolution of the images are clearly improved after wavefront correction by AO. To the best of out knowledge, this system is the first solar AO system in China.  相似文献   

11.
By combining second-harmonic generation and wave-front correction of a hybrid Ti:sapphire-Nd:glass terawatt laser chain, we were able to generate a focused intensity above 10(19) W/cm(2), with an estimated 10(9):1 intensity contrast ratio. The frequency of the laser is doubled by use of a type I KDP crystal, and wave-front correction is achieved with a deformable mirror coupled to a wave-front sensor.  相似文献   

12.
用SVGA1薄膜晶体管液晶显示器矫正人眼波像差   总被引:9,自引:9,他引:0  
全薇  王肇圻  宋贵才  凌宁  傅汝廉 《光子学报》2004,33(12):1445-1448
在研究了SVGA1薄膜晶体管液晶显示器(TFT LCD)的位相调制特性的基础上,用它作为眼波像差的矫正器件,在用哈特曼-夏克波前传感器的眼像差测量系统中对眼波像差进行了成功的矫正.对于5.2 mm的瞳孔,矫正后人眼波像差的PV值降低了3倍多,并接近瑞利判据的像差容限.对系统的光学传递函数(MTF)的分析说明,经波像差矫正后眼的空间分辨率由17 c/deg提高到38 c/deg.  相似文献   

13.
纯相位液晶空间光调制器拟合泽尼克像差性能分析   总被引:2,自引:0,他引:2       下载免费PDF全文
蔡冬梅  凌宁  姜文汉 《物理学报》2008,57(2):897-903
纯相位液晶空间光调制器作为波前校正器构成的高分辨率、低能耗、价格低廉、易于控制的自适应光学系统受到越来越多的关注.作为一种新型波前校正器件,它对波前像差的校正能力是反映其在自适应光学系统中应用的一个重要的指标,因此有必要仔细地研究它对各种像差的校正能力,以确定其可能的应用范围.波前校正器对各阶泽尼克像差的拟合效果有效地反映了该器件对不同像差的校正能力.利用256×256像素的纯相位液晶空间光调制器(LC-SLM)产生不同系数的前36项泽尼克像差分析LC-SLM对不同像差的校正能力.讨论了填充因子、离散像素 关键词: 液晶空间光调制器 相位调制 自适应光学 泽尼克多项式  相似文献   

14.
An experimental tracking optical coherence tomography (OCT) system has been clinically tested. The prototype instrument uses a secondary sensing beam and steering mirrors to compensate for eye motion with a closed-loop bandwidth of 1 kHz and tracking accuracy, to within less than the OCT beam diameter. The retinal tracker improved image registration accuracy to <1 transverse pixel (<60 microm). Composite OCT images averaged over multiple scans and visits show a sharp fine structure limited only by transverse pixel size. As the resolution of clinical OCT systems improves, the capability to reproducibly map complex structures in the living eye at high resolution will lead to improved understanding of disease processes and improved sensitivity and specificity of diagnostic procedures.  相似文献   

15.
We describe high-speed Fourier domain optical coherence tomography (OCT) using optical demultiplexers (ODs) for spectral dispersion. The OD enables separation of a narrow spectral band of 14 GHz (0.11 nm) from a broadband incident light at 256 different frequencies in 25.0 GHz intervals centered at 192.2 THz (1559.8 nm). OCT imaging of 60,000,000 axial scans per second was achieved through parallel signal acquisition using 256 balanced photoreceivers to simultaneously detect all the output signals from the ODs in a Fourier domain OCT system. OCT imaging at a 16 kHz frame rate, 1100 A-lines per frame, 3 mm depth range, and 23 microm resolution was demonstrated using a resonant scanner for lateral scanning.  相似文献   

16.
自适应光学系统的实时模式复原算法   总被引:2,自引:0,他引:2       下载免费PDF全文
 分析了自适应光学系统中实时模式复原算法的基本原理,建立了一种新型的传感器本征模复原算法。与常用的直接斜率法相比,这种模式复原算法可以有效减小探测噪声对复原计算过程的影响,提高系统的闭环稳定性和校正效果。在61单元自适应光学系统上实现了这种模式复原算法,并在实际大气湍流中对传感器本征模复原算法和直接斜率法进行了实验对比研究。  相似文献   

17.
A successful beam cleanup of a 5-mJ/200-μs pulsed solid-state laser system operating at 532-nm wavelength is demonstrated. In this beam cleanup system, a wave-front sensor-less adaptive optics (AO) system is set up with a 20-element bimorph mirror (BM), a high-voltage amplifier, a charge-coupled device camera, and a control software implementing the stochastic parallel gradient descent (SPGD) algorithm. The brightness of the laser focal spot is improved because the wave-front distortions have been compensated. The performance of this system is presented and the experimental results are analyzed.  相似文献   

18.
An adaptive optics system for the retina imaging is introduced in the paper. It can be applied to the eye with myopia from 0 to 6 diopters without any adjustment of the system. A high-resolution liquid crystal on silicon (LCOS) device is used as the wave-front corrector. The aberration is detected by a Shack-Harmann wave-front sensor (HASO) that has a Root Mean Square (RMS) measurement accuracy of λ/100 (λ = 0.633 μm). And an equivalent scale model eye is constructed with a short focal length lens (∼18 mm) and a diffuse reflection object (paper screen) as the retina. By changing the distance between the paper screen and the lens, we simulate the eye with larger diopters than 5 and the depth of field. The RMS value both before and after correction is obtained by the wave-front sensor. After correction, the system reaches the diffraction-limited resolution approximately 230 cycles/mm at the object space. It is proved that if the myopia is smaller than 6 diopters and the depth of field is between −40 and +50 mm, the system can correct the aberration very well.  相似文献   

19.
Lim H  Jiang Y  Wang Y  Huang YC  Chen Z  Wise FW 《Optics letters》2005,30(10):1171-1173
We report a compact, high-power, fiber-based source for ultrahigh-resolution optical coherence tomography (OCT) near 1 microm. The practical source is based on a short-pulse, ytterbium-doped fiber laser and on generation of a continuum spectrum in a photonic crystal fiber. The broadband emission has an average power of 140 mW and offers an axial resolution of 2.1 microm in air (<1.6 microm in biological tissue). The generation of a broad bandwidth is robust and efficient. We demonstrate ultrahigh-resolution, time-domain OCT imaging of in vitro and in vivo biological tissues.  相似文献   

20.
基于随机并行梯度下降(SPGD)方法的自适应光学(AO)系统通过直接优化系统的性能评价函数来控制波前校正器以补偿光束中存在的波前畸变。为了提高这种无模型优化自适应光学系统的收敛速度, 提出了基于分区域耦合的新方法以改进传统随机并行梯度下降自适应光学系统的工作方式。将波前校正器光学孔径分成多块子区域, 每块子区域对应着的所有驱动器作为一个整体控制单元, 从形式上可以得到一个空间分辨率较低的分区域波前校正器。该校正器与原校正器同步工作, 并采用随机并行梯度下降算法对同一个性能评价函数进行优化, 从而构成了双校正器的耦合工作结构。对256单元分立活塞式波前校正器建立了自适应成像系统的数值模型, 结果表明这种分区域耦合的随机并行梯度下降自适应光学系统比传统随机并行梯度下降自适应光学系统具有更快的收敛速度和更好的渐近态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号