首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study has investigated the composition of amniotic fluid (AF) using capillary electrophoresis (CE). A detailed optimisation investigation was undertaken to obtain the best resolution of the major peaks in amniotic fluid. In the final method, capillary zone electrophoresis (CZE) of AF was performed on a Hewlett Packard3D CE instrument using a fused-silica capillary of 44 cm total length (36 cm to the detector) with in internal diameter of 50 microm. The background electrolyte was 20 mM sodium tetraborate containing 0.8 mM EDTA adjusted to pH 9.0. AF was diluted 1 plus 1 with deionised water prior to hydrodynamic injection for 3 s at 50 mbar. The separation was performed at +22.5 kV and resulted in a current of 65 microA. The capillary temperature was 28 degrees C. Using this CZE method, some eight peaks were consistently resolved in AF samples and several other more transient peaks have been separated from AF in less than 10 min. A scheme for the identification of peaks once they had been separated was also developed. Four peaks have been identified as proteins, i.e., gamma-globulin, alpha1-antitrypsin, transferrin and albumin. Surprisingly, one major peak was shown to be the purine catabolite, xanthine.  相似文献   

2.
A new micelle capillary electrophoresis based on cyclodextrin micellar electrokinetic chromatography (MEKC) for the determination of bisphenol A and 10 alkylphenols in rat serum is reported. Several surfactants and dextrins were studied. Bisphenol A and alkylphenols were separated using a 50 microm x 50 cm capillary with 20 mM borate phosphate buffer (pH 8.0) containing 20 mM sodium dodecylsulfate and 5 mM gamma-cyclodextrin as carrier. The method could determine 0.6-2000 microg/mL of phenols in 100 microL serum by photometric detection at 214 nm. Using 2.0 mL serum, 1.0 ng/mL of phenols could be determined. The relative standards deviations were 6.3-7.7% at 10 microg/mL in serum. The recoveries were 91.8-93.0% with 10 microg/mL serum samples.  相似文献   

3.
Capillary electrophoretic separations have been investigated for six controlled narcotic analgesic compounds having related structures. Owing to the similar charge-to-mass ratios of these compounds, capillary zone electrophoresis failed to provide a satisfactory separation, whereas a baseline-resolved separation was achieved in 10 min using micellar electrokinetic chromatography. Column efficiencies of 40,000-150,000 plates/m were obtained with a 50 cm long, 50 microm inner diameter (ID) capillary using 50 mM sodium dodecyl sulfate (SDS) in a 50 mM borate solution containing 12% isopropanol. In contrast, separation of this mixture by capillary electrochromatography proved to be significantly superior. The capillary was 15 cm long, with an ID of 75 microm, and was packed with 1.5 microm nonporous octadecyl silica (ODS) particles. The mobile phase consisted of 80% 10 mM tris(hydroxymethyl)aminomethane (Tris) and 20% acetonitrile, and contained 5 mM SDS. A complete separation was obtained in 2.5 min with an efficiency of 250,000-500,000 plates/m.  相似文献   

4.
Protein oxidation affects the structure of many amino acids. Variants of tyrosine are increasingly important in medical and food sciences. The synthesis of standards is essential for monitoring the disease state of patients with various illnesses and the quality of a number of food products. A method for monitoring standard synthesis of dityrosine and 3-bromotyrsoine from tyrosine using capillary electrophoresis (CE) is presented. Optimum separation was achieved using an isoelectric buffer consisting of 100mM iminodiacetic acid (IDA)+75 mM lauryl sulfobetaine (SB 3-12)+0.02% hydroxypropyl methylcellulose (HPMC) in a 27 cm x 75 microm capillary at 22 kV and 45 degrees C. Using these conditions the tyrosine adducts could be easily separated in less than 4 min. The resolution of the CE method was similar to HPLC separations, but analysis time was distinctly shorter.  相似文献   

5.
Two capillary electrophoresis (CE) methods were evaluated for their suitability in systematic toxicological analysis (STA). A test set of 25 barbiturates was analysed using capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC). Buffers used consisted of 90 mM borate set at pH 8.4 (CZE) and 20 mM phosphate, 50 mM sodium dodecyl sulphate set at pH 7.5 (MEKC). All analyses were carried out using fused silica capillaries using an electric field strength of 52.6 kV/m. The use of a reproducible identification parameter is very important in STA as it influences the identification power (IP). To deal with the poor reproducibility of the migration time, we introduced the corrected effective mobility. Inter-day reproducibilities of the latter parameter were < 0.6% for CZE and < 0.5% for MEKC, using daily prepared buffers. The IP of the methods was expressed by calculation of the discriminating power and the mean list length. Data obtained were compared to gas chromatographic and high-performance liquid chromatographic data, and correlations between all methods were calculated. It was shown that little correlation exists between chromatographic and electrophoretic techniques. The results indicated that CE has a good identification power for the application in STA, especially when a combination of methods having a low correlation is used.  相似文献   

6.
A non-aqueous capillary electrophoresis (NACE) method for quantifying the seven crocin metabolites that are the major biologically active ingredients of saffron was developed. Separation is done by using a fused silica capillary filled with a 12.5 mM H3BO3/37.5 mM sodium tetraborate methanolic solution as background electrolyte. The results obtained were compared with the total index "safranal value", widely used as a quality measure of saffron products. The comparison revealed that the proposed NACE method provides useful information not obtained in the safranal value. Infact, samples with a similar safranal value can contain crocin metabolites in different concentrations and relative proportions. This new method is very useful for quality control in commercial saffron samples.  相似文献   

7.
Medina I  Rubí E  Mejuto MC  Cela R 《Talanta》1993,40(11):1631-1636
A rapid method for speciation and determination of organomercury compounds in biological samples of marine origin using Capillary Electrophoresis (CE) is reported. Organomercurials were extracted from the samples by means of the classical West?? procedure thus giving organomercury-cysteine complexes which can be separated from each other by means of CE resulting in effective speciation. Electrophoretic separation was achieved in an open silica capillary tube at 15-18 kV using a 100mM sodium borate buffer (pH 8.35). All mercury species were distinctively separated within 12 min. Results are presented for the analysis of real marine samples and reference materials, and compared with those obtained by the GC commonly accepted procedure.  相似文献   

8.
Two novel analytical methodologies using capillary electrophoresis (CE) and liquid chromatography (LC) were developed and compared for the determination of diclofenac sodium in commercial and simulated tablet formulations. The CE analysis was performed in a bare fused-silica capillary with 75 microm id and total length of 50 cm (28 cm to the detector) with a buffer solution of 20 mM sodium tetraborate, pH 9.23. The applied voltage was 20 kV, and acetaminophen was used as the internal standard (IS). The LC analysis was performed with a LiChrospher 100 RP-18 (5 microm) column and a mobile phase of methanol-diluted glacial acetic acid (0.3 parts in 2500; 75 + 25) at a flow rate of 0.9 mL/min with propylparaben as the IS. In both analyses, detection was by ultraviolet absorption at 276 nm. Under optimized conditions, the CE migration times for the diclofenac sodium standard and acetaminophen (IS) were 2.07 and 1.59 min, respectively, and the LC retention times for the diclofenac sodium standard and propylparaben (IS) were 3.98 and 2.26 min, respectively. The resolution and efficiency for CE were 14.2 and 1.6 x 10(5) plates/m, respectively, and for LC, 5.0 and 8.6 x 10(3) plates/m, respectively. Calibration curves of peak area versus concentration gave correlation coefficients of 0.9992 for CE and 0.9994 for LC. The limits of detection and quantitation were 8.40 and 25.46 microg/mL, respectively, for CE and 4.60 and 13.93 microg/mL, respectively, for LC. Coefficients of variation were 1.68 and 0.37% for CE and LC, respectively. Average recoveries obtained with CE and LC were 103.12+/-0.90 and 99.59+/-0.21%, respectively. Although both methodologies were shown to be suitable for the determination of diclofenac sodium in tablets, performing in a similar manner with regard to several aspects (linearity, recovery, and specificity), CE provided faster analysis and better column efficiency, whereas LC provided superior repeatability and sensitivity.  相似文献   

9.
An on-line preconcentration capillary electrophoresis (CE) technique, which combines a large volume sample stacking with a dynamic pH junction technique, is introduced in this paper. This dynamic pH junction with co-electroosmotic migration is formed between sodium borate pH 9.5 and sodium phosphate pH 2.5 with 150 mM sodium dodecylsulfate (SDS). A full capillary based injection allows determination of weak acidic compounds at ppb concentration levels (achieved LOD for benzoic acid was 11 nmol L(-1)). The proposed preconcentration method was compared with ITP/ITP (LOD 120 nmol L(-1)), ITP/CZE (LOD 740 nmol L(-1)) and a simple CZE method (LOD 23,330 nmol L(-1)). The analytical potential of this method was assessed with juice test samples.  相似文献   

10.
A capillary electrophoresis (CE) method is described for the simultaneous determination of copper and iron after complexation with a readily biodegradable chelating agent, [S,S']-ethylenediaminedisuccinic acid (EDDS), in wood pulp. CE separation was performed in a fused-silica capillary (50 microm i.d.; total length, 65 cm) with an electrolyte containing 25 mM borate buffer and 0.5 mM CTAB at pH 7.0 and an applied voltage of -25 kV. The samples were introduced by applying a 50 mbar pressure for 2 s, and detection of the complexes was monitored at 245 nm. The methodology performance of the methods was evaluated in terms of the linearity, limit of detection (LOD), limit of quantitation (LOQ) and reproducibility. The applicability of the method was demonstrated for the analysis of copper and iron in wood pulp.  相似文献   

11.
The determination of the relative methylation in DNA tumor samples, in order to evaluate the activity of some anti-cancer drugs, has become a very important issue in the clinical field. Capillary electrophoresis (CE) applications in this area have been done previously but no good separation for model samples or tumor samples has been reported. In this work, the CE conditions have been optimized in order to obtain baseline separation and efficient peaks for cytosine and 5-methylcytosine in both, standard mixtures and actual tumor samples; other bases (adenine, uracil, guanine, and thymine) have also been integrated in the optimization studies. More efficient peaks and shorter analysis time compared with the already reported conditions have been obtained employing a fused-silica capillary (75 microm inner diameter) of 44.5 cm effective length, 20 mM carbonate buffer (pH 9.6) plus 80 mM sodium dodecyl sulfate, a separation voltage of 20 kV, and detection at 223 nm.  相似文献   

12.
A simple analytical system using disposable, open-tubular ion exchange clean-up precolumns coupled in-line to capillary electrophoresis for direct injection of biological samples is presented. The clean-up precolumns were prepared from fused silica capillaries by thermally initiated layer-by-layer polymerization of poly(butadiene-maleic acid) (PBMA) directly on the capillary wall. Typically, 6 cm long precolumns with 4-layers of PBMA were used for sample pretreatment. A robust and reproducible coupling between the precolumn (75 μm ID) and the analytical capillary (50 μm ID) was achieved using an inexpensive, commercially available low dead volume union. No extra dispersion of the analyte zones was observed. Proteins and other high molecular weight compounds from biological sample matrices were retained on the cation-exchanger sites of the precolumn, which eliminated their adsorption on analytical capillary walls and ensured stable electroosmotic flow and migration times of target analytes. Unretained small inorganic cations migrated freely into the analytical capillary for separation and detection. Applicability of the sample clean-up procedure was proved by determination of major inorganic cations in blood serum and plasma samples using capillary electrophoresis with contactless conductivity detection. Separations were performed in background electrolyte solution consisting of 15 mM L-arginine, 12.5 mM maleic acid, 3 mM 18-crown-6 at pH 5.5 and repeatabilities of migration times and peak areas were below 1.5% and 7.3%, respectively. Less than 1 μL of biological sample was required for injection.  相似文献   

13.
Capillary isotachophoresis (ITP) and comprehensive isotachophoresis-capillary electrophoresis (ITP-CE) were successfully coupled to electrospray ionization (ESI) orthogonal acceleration time-of-flight mass spectrometry (TOF-MS) using angiotensin peptides as model analytes. The utility of ITP-TOF-MS and ITP-CE-TOF-MS for the analysis of samples containing analyte amounts sufficient to form flat-top ITP zones (30 microM) as well as for samples with trace analyte amounts (0.3 microM) was studied. Separations were performed in 150 microm internal diameter (I.D.) capillaries for the ITP experiments, and in 200 microm I.D. (ITP) and 50 microm I.D. (CE) capillaries for ITP-CE experiments. The fused-silica columns were coated with poly(vinyl alcohol) to suppress electroosmotic flow that can disrupt ITP zone profiles. The sample loading capacity in both ITP and comprehensive ITP-CE was greatly enhanced (up to 10 microl) compared with typical nanoliter-sized injection volumes in CE. It was concluded that ITP-TOF-MS alone was adequate for the separation and detection of high concentration samples. The outcome was different at lower analyte concentrations where mixed zones or very sharp peaks formed. With formation of mixed zones, ion suppression and discrimination could occur, complicating quantitative determination of the analytes. This problem was effectively overcome by inserting a CE capillary between the ITP and TOF-MS. In such an arrangement, samples were preconcentrated in the high load WTP capillary and then injected into a CE capillary where they were separated into non-overlapping peaks prior to their detection by TOF-MS. The advantage of this comprehensive arrangement, which we have described previously, is that there is no need to discard portions of the sample in order to avoid overloading of the CE capillary. The whole sample is analyzed by multiple injections from ITP to CE. Thus, this method can be used for the analysis of complex samples with wide ranges of component concentrations.  相似文献   

14.
The use of capillary electrophoresis (CE) for the determination of cytochrome P450 3A4 (CYP3A4) activity with R-warfarin as a substrate was investigated. CYP3A4 activity was determined by the quantitation of the product, 10-hydroxywarfarin, based on separation by CE. The separation conditions were as follows: capillary, 80.5 cm (75 microm i.d., 60 cm effective length); 50 mM sodium phosphate buffer (pH 6.5); 23 kV (90 microA) applied voltage; fluorescence detection, excitation wavelength, 310 nm, emission wavelength, 418 nm; capillary temperature, 37 degrees C. With the developed CYP3A4 activity assay and the Lineweaver-Burk equation, the Michaelis-Menten parameters Km and Vmax for formation of 10-hydroxywarfarin from R-warfarin in the presence of CYP3A4 were calculated to be 166 +/- 12 microM and 713 +/- 14 pmol/min/nmol (or 91.4 pmol/min/mg) CYP3A4, respectively.  相似文献   

15.
Rodríguez R  Picó Y  Font G  Mañes J 《Electrophoresis》2001,22(10):2010-2016
A multiresidue analytical method based on solid-phase extraction (SPE) enrichment combined with capillary electrophoresis (CE), using micellar electrokinetic capillary chromatography (MEKC), was developed to determine ten substituted urea pesticides in orange and tomato samples. Several factors such as pH, composition and concentration of the buffer, concentration of surfactant, addition of organic solvent, and working voltage were optimized to obtain the best compound separation in the shortest time. Separation can be achieved in 7 min using a micellar aqueous pH 9 buffer composed of 4 mM borate and 35 mM sodium dodecyl sulfate. After an SPE procedure, which provided a 10-fold enrichment, the limit of detection was about 0.05 mg kg(-1), which is in the order of the maximum residue limits (MRLs) established by the European Union (EU) for most of these compounds. Increasing the enrichment factor by using a larger amount of sample is difficult in oranges due to the matrix interferences, but is possible in tomatoes, which gave cleaner extracts and easily reached a 25-fold enrichment factor. The procedure involving SPE and CE provided acceptable recoveries (ranged 42-118%) and relative standard deviations (RSDs; < 19%) at levels between 0.3 and 5 mg kg(-1).  相似文献   

16.
Capillary liquid chromatography (cLC) and capillary electrophoresis (CE) have been critically compared for the separation of metalloproteins when using collision-cell inductively coupled plasma mass spectrometry (ICP-CC-MS) as detection system. For cLC separation, the selected column was a C8 (0.3 mm I.D.) and the separation conditions involved a gradient up to 80% methanol in 10mM ammonium acetate buffer (pH 7.4). The low flow rate used (3 microL min(-1)) permitted the utilization of a high methanol content maintaining the sensitivity along the whole chromatographic run. For this purpose, a new low-flow interface has been developed based on a total consumption nebulizer. Similarly, CE has been studied as separation technique using a 75 microm I.D. fused silica capillary and a running buffer of 20 mM Tris-HNO3 (pH 7.4) and working at 30 kV. Metallothionein (mixture of MT-I and -II) and superoxide dismutase (SOD) have been used as protein models in order to evaluate the separation/detection capabilities using the same injection volumes in both systems (20 nL). For both hybrid systems, separation parameters such as retention factor, numbers of theoretical plates, tailing factor and resolution have been critically compared. Also, the analytical performance characteristics of both hybrid systems have been evaluated and tested by analyzing the Cu-, Zn-species present in red blood cell extracts in order to explore more adequate separation methodology for the analysis of metalloproteins in complex matrices.  相似文献   

17.
Rabeprazole sodium is an antisecretory agent that inhibits the enzyme H+/K+ ATPase present in the stomach parietal cells. There are few data about its quantitative determinations in laboratorial routines. Capillary electrophoresis is a method being used increasingly for analysis of pharmaceutical compounds, the main advantages of which are the simplicity of instrumentation, low consumption of sample and reagents, and fast analysis. The aim of this study was to develop and validate a capillary electrophoresis method for determination of rabeprazole sodium in coated tablets. The conditions used were a bare fused silica capillary with 48.0 cm length (39.5 cm effective) and 75 microm id; a 10mM, pH 9.0, sodium tetraborate run buffer; a diode array detector set at 291 nm; hydrodynamic injection (50 mbar/5 s); and a voltage of 20 kV. HP Chemstation CE rev. A.06.03 software was used for system control, data acquisition, and analysis. The method was demonstrated to be linear in the concentration range of 5.0-40.0 microg/mL (r = 0.9993), precise (interday relative standard deviation = 0.49), accurate (mean recovery = 103.1%), and specific. The limits of detection and quantitation were 1.29 and 3.91 microg/mL, respectively.  相似文献   

18.
The use of capillary electrophoresis (CE) for simultaneous qualitative and quantitative detection of paraquat (PQ) and diquat (DQ) in both serum and urine was investigated. The two herbicides were extracted from biological fluids with liquefied phenol. Serum required a deproteinization with chloroform and ammonium sulfate as pretreatment. The extracts were hydrodynamically injected and the complete separation was carried out in 10 min, using a capillary tube (75 microm i.d., 500 mm) of fused silica containing 50 mM phosphate buffer (pH 2.50) as the carrier. UV absorbance detection at 200 nm was performed by an on-column detector. The analytes were characterized by their respective migration times. Analytical recoveries were 52.6% for PQ and 62.6% for DQ in serum, and 71.4% and 59.3%, respectively, in urine. The linearity was studied up to 4 mg/L and the limits of detection (LODs) were better than 5 pg/mL in serum or urine. The CE method described was applied to the characterization of two lethal poisonings and results were related.  相似文献   

19.
Available and total niacin content in lentils and faba beans have been analyzed by capillary electrophoresis (CE), and the results compared with those obtained by high performance liquid chromatography (HPLC). Acidic and enzymatic hydrolysis have been carried out for available niacin determination, and an alkaline extraction performed for total niacin. The extracts were subsequently purified using a strong anion exchanger resin. Precise conditions for purification had to be worked out for each one of the two analytical methods (HPLC and CE). The HPLC analysis for available and total niacin was carried out in an ion-pair reverse phase column with UV detection at 261 nm. For the CE separation, the following conditions were employed: a 20 mM sodium tetraborate; 15 mM sodium dodecyl sulfate and 20% isopropyl alcohol solution as separation buffer; 30 kV and 25 or 30°C. Separation was carried out in a 70 cm effective length × 75 μm i.d. fused-silica capillary using on-column UV detection at 254 nm. The results obtained by CE for lentils and faba beans were similar to those obtained by HPLC.  相似文献   

20.
Biopharmaceutical production takes place in complex processes which should be thoroughly understood. Therefore, the iConsensus project focuses on developing a monitoring platform integrating several process analytical technology tools for integrated, automated monitoring of the biopharmaceutical process. Water-soluble vitamin monitoring using (microchip) capillary electrophoresis (CE) is part of this platform. This work comprises the development of conventional CE methods as the first part towards integrated vitamin monitoring. The vitamins were divided based on their physical–chemical properties to develop two robust methods. Previously, a method for the analysis of cationic vitamins (pyridoxine, pyridoxal, pyridoxamine, thiamine and nicotinamide) in cell culture medium was developed. This work focused on the development of a micellar electrokinetic chromatography method for anionic and neutral vitamins (riboflavin, d -calcium pantothenate, biotin, folic acid, cyanocobalamin and ascorbic acid). By employing multivariate design of experiments, the background electrolyte (BGE) could be optimised within one experiment testing only 11 BGEs. The optimised BGE conditions were 200 mM borate with 77 mM sodium dodecyl sulphate at a pH of 8.6. Using this BGE, all above-mentioned cationic, anionic and neutral vitamins could be separated in clean samples. In cell culture medium, most anionic and neutral vitamins could be separated. Combining the two methods allows for analysis of cationic, anionic and neutral vitamins in cell culture medium samples. The next step towards integrated vitamin monitoring includes transfer to microchip CE. Due to the lack of fast and reliable methods for vitamin monitoring, the developed capillary methods could be valuable as stand-alone at-line process analytical technology solutions as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号