首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
M.H. Lee 《哲学杂志》2013,93(24):2812-2825
Magneto-electronic properties of asymmetric bilayer nanographene ribbons are enriched by geometric structures, interlayer atomic interactions, magnetic quantization and finite-size confinement. There are drastic changes on the band symmetry, the degeneracy of the partial flat bands, the number of band-edge states, the energy dispersion, the carrier density, and the spatial symmetry of the wave function. Quasi-Landau levels might be converted into oscillating bands where extra band-edge states are created. When the upper ribbon is located at the ribbon centre, the Landau wave functions are completely destroyed. Meanwhile, a charge transfer between different layers or different sublattices in the same layer occurs. Furthermore, the density of states, reflecting the band structure, is also severely altered in terms of the number, structure, energy, and height of the prominent peaks.  相似文献   

2.
The electronic and transport properties of monolayer and AB-stacked bilayer zigzag graphene nanoribbons subject to the influences of a magnetic field are investigated theoretically. We demonstrate that the magnetic confinement and the size effect affect the electronic properties competitively. In the limit of a strong magnetic field, the magnetic length is much smaller than the ribbon width, and the bulk electrons are confined solely by the magnetic potential. Their properties are independent of the width, and the Landau levels appear. On the other hand, the size effect dominates in the case of narrow ribbons. In addition, the dispersion relations rely sensitively on the interlayer interactions. Such interactions will modify the subband curvature, create additional band-edge states, change the subband spacing or the energy gap, and separate the partial flat bands. The band structures are symmetric or asymmetric about the Fermi energy for monolayer or bilayer nanoribbons, respectively. The chemical-potential-dependent electrical and thermal conductance exhibits a stepwise increase behaviour. The competition between the magnetic confinement and the size effect will also be reflected in the transport properties. The features of the conductance are found to be strongly dependent on the field strength, number of layers, interlayer interactions, and temperature.  相似文献   

3.
T.S. Li  M.F. Lin  J.Y. Wu 《哲学杂志》2013,93(11):1557-1567
In this work, we use the tight-binding model to study the low-energy electronic properties of carbon nanoscrolls subject to the influences of a transverse electric field. A carbon nanoscroll can be considered as an open-ended spirally wrapped graphene nanoribbon. The inter-wall interactions will alter the subband curvature, create additional band-edge states, modify the subband spacing or energy gap, and separate the partial flat bands. Furthermore, the energy band symmetry about the Fermi level is lifted by such interactions. The truncated Archimedean spiral ρ?=?r a θ?+r is used to describe the spiral structures of carbon nanoscrolls. The energy gap is found to oscillate significantly with r, and exhibits complete energy gap modulations. With the inclusion of a transverse electric field, the band structures are further altered. Inter-wall hoppings will cause electron transfers between different atoms leading to distortions of the electron wavefunctions. The main features of the energy dispersions are directly reflected in the density of states. The numbers, heights, and energies of the density of states peaks are dependent on the electric field strength.  相似文献   

4.
The electronic and thermal properties of AB-stacked bilayer graphene nanoribbons subject to the influences of a transverse electric field are investigated theoretically, including their transport properties. The dispersion relations are found to exhibit a rich dependence on the interlayer interactions, the field strength, and the geometry of the layers. The interlayer coupling will modify the subband curvature, create additional band-edge states, change the subband spacing or energy gap, and separate the partial flat bands. The bandstructures will be symmetric or asymmetric about the Fermi energy for monolayer or bilayer nanoribbons, respectively. The inclusion of a transverse electric field will further alter the bandstructures and lift the degeneracy of the partial flat bands. The chemical-potential-dependent electrical and thermal conductance exhibit a stepwise increase behavior. Variations in the electronic structures with field strength will be reflected in the electrical and thermal conductance. Prominent peaks, as well as single-shoulder and multi-shoulder structures in the electrical and thermal conductance are predicted when varying the electric field strength. The features of the conductance are found to be strongly dependent on the field strength, the geometry, interlayer interactions and temperature.  相似文献   

5.
The tight-binding model is utilized to investigate the influence of modulation electric fields on bilayer Bernal graphene (BBG). The electric potential changes the parabolic bands into oscillatory ones, and induces more band-edge states. As the strength of field is strengthened, it would enhance the oscillation of energy band, affect larger range of energy, induced more band-edge states, and cause more overlapping of valence and conduction band. While the period of field is enhanced, the number of sub-bands and band-edge states would increase. However the deformation of energy band is less violent. The essential features of electronic structure are directly reflected on the density of states (DOS). DOS displays many prominent peaks resulting from the induced band-edge states.  相似文献   

6.
The dispersion spectrum of single hole in a bilayer composed of plane and chain, each described by t-J model, coupled by - interactions between them, is calculated in terms of self-consistent Born approximation. It was found that for a weak interlayer coupling the two different quasiparticle bands, plane-like and chain-like bands, show a minimum at (, ) and a maximum at (0, 0) or (, ). In plane-like dispersion we can find an anomalous “flat” region near Fermi surface along the antiferromagnetic Brillouin zone boundary, which favors the formation of the van-Hove singularities. With increasing interlayer coupling, a large modification of the dispersions is carried out, the minimum deviates from (, ) and the energy gap of the two bands decreases and finally disappears when the vertical coupling is larger enough. The shapes of the QP bands are sensitive to the vertical hopping rather than the vertical exchange energy . As the interlayer coupling increases, the shapes of the two QP bands suggest that the chain-like band approaches to that of quasi-one dimensional model, and the plane-like band undergoes the one layer t - t '-J models' band. Received 17 March 1999  相似文献   

7.
To obtain a rigorous definition of the chemical bonds in binary transition-metal aluminides, topological analyses were performed for VAl3 and TiAl3 in the D022 and L12 structures. The analyses were based on the valence charge densities calculated with the ab initio density functional theory. To better understand the formation mechanism of the pseudogap in these compounds, the band structure, the density of states (DOS) and the band decomposed charge density (BDCD) were calculated. The topological analyses reveal that the interactions between the (V, Ti) and Al atoms are all pure shared-shell interactions, the bonds are covalent and clearly have π-bond character. The study of the band structure, DOS and BDCD shows that the formation of the pseudogap is due to the crystal field energy splitting of the (V, Ti)-3d orbitals combined with the inter-unit-cell orbital interaction.  相似文献   

8.
The structural and electronic properties of sodium bromide (NaBr) are investigated by the density functional theory (DFT) within the generalized gradient approximation (GGA) for the exchange and correlation energy. The equilibrium lattice constant, bulk modulus and its pressure derivative are obtained by fitting the calculated total energy to the third-order Birch-Murnaghan equation of state. The band structure along the higher symmetry axes in the Brillouin zone, the density of states (DOS) and the partial density of states (PDOS) are presented. The results have been discussed and compared with the available experimental and theoretical data.  相似文献   

9.
Theory of magnetoquantum oscillations with spin-split structure in strongly anisotropic (two-dimensional (2D)) metal is developed in the formalism of level approach. Parametric method for exact calculation of oscillations wave forms and amplitudes, developed earlier for spin degenerate levels is generalized on a 2D electron system with spin-split levels. General results are proved: 1) proportionality relation between magnetization and chemical potential oscillations accounting for spin-split energy levels and magnetic field unperturbed levels (states of reservoir), 2) basic equation for chemical potential oscillations invariant to various models of 2D and 1D energy bands (intersecting or overlapping) and localized states. Equilibrium transfer of carriers between overlapping 2D and 1D bands, characterizing the band structure of organic quasi 2D metals, is considered. Transfer parameter, calculated in this model to be of the order of unity, confirms the fact that the wave form of oscillations in organic metals should be quasisymmetric up to ultralow temperature. Presented theory accounts for spin-split magnetization oscillations at magnetic field directions tilted relative to the anisotropic axis of a metal. Theoretical results are compared with available experimental data on organic quasi-2D metal α-(BEDT-TTF)2KHg(SNC)4 explaining the appearance of clear split structure under the kink magnetic field and absence above by the corresponding change in the electron g-factor rather than cyclotron mass. Received 20 December 2000 and Received in final form 13 July 2001  相似文献   

10.
We study the energy spectrum and electronic properties of a two-dimensional (2D) spinless electron gas in a periodic magnetic field which has the symmetry of a triangular lattice. We show that the energy bands depend strongly on the value of the magnetic field. For large field the low-energy electrons are localized on closed rings where the magnetic field vanishes. This results in the appearance of persistent currents around these rings. We also calculate the intrinsic Hall conductivity, which is quantized when the Fermi level is in a gap.  相似文献   

11.
We report a density functional calculation on the NiAs-type Mn-based pnictides. The total energy as a function of volume is obtained by means of self-consistent tight-binding linear muffin–tin orbital method by performing spin and non-spin polarized calculation. From the present study, we predict a magnetic-phase transition from ferromagnetic (FM) to non-magnetic (NM) around 49 and 35.7 GPa for MnAs and MnSb, respectively. The pressure-induced transition is found to be a second-order transition. The band structure and density of states (DOS) are plotted for FM and NM states. Apart from this the ground-state properties like magnetic moment, lattice parameter and bulk modulus are calculated and are compared with the available results. Under large volume expansion these compounds exist in zinc-blende (ZB) structure, which shows half metallicity. The magnetic moment and equilibrium lattice constants for ZB structure are obtained as well as band structure and DOS are presented.  相似文献   

12.
Using Scanning Tunneling Microscope at low temperature we explore the superconducting phase diagram in the π-band of the two-band superconductor MgB2. In this band the peculiar shape of the local tunneling spectra and their dynamics in the magnetic field reveal the complex character of the quasiparticle density of states (DOS). The gap in the DOS is first rapidly filled with states in raising the magnetic field up to 0.5 T and then slowly approaches the normal state value: the gap is observed up to 2 T. Such a change in the DOS dynamics suggests the existence of two terms in the DOS of the π-band: a first one, reflecting an intrinsic superconductivity in the band and a second one, originating from an inter-band coupling to the σ-band. Our findings allow a deeper understanding of the unique phase diagram of MgB2.  相似文献   

13.
匡潜玮  刘红侠  王树龙  秦珊珊  王志林 《中国物理 B》2011,20(12):127101-127101
After constructing a stress and strain model, the valence bands of in-plane biaxial tensile strained Si is calculated by k·p method. In the paper we calculate the accurate anisotropy valance bands and the splitting energy between light and heavy hole bands. The results show that the valance bands are highly distorted, and the anisotropy is more obvious. To obtain the density of states (DOS) effective mass, which is a very important parameter for device modeling, a DOS effective mass model of biaxial tensile strained Si is constructed based on the valance band calculation. This model can be directly used in the device model of metal-oxide semiconductor field effect transistor (MOSFET). It also a provides valuable reference for biaxial tensile strained silicon MOSFET design.  相似文献   

14.
Topological Weyl semimetals (WSM), a new state of quantum matter with gapless nodal bulk spectrum and open Fermi arc surface states, have recently sparked enormous interest in condensed matter physics. Based on the symmetry and fermiology, it has been proposed that WSMs can be broadly classified into two types, type-I and type-II Weyl semimetals. While the undoped, conventional, type-I WSMs have point like Fermi surface and vanishing density of states (DOS) at the Fermi energy, the type-II Weyl semimetals break Lorentz symmetry explicitly and have tilted conical spectra with electron and hole pockets producing finite DOS at the Fermi level. The tilted conical spectrum and finite DOS at Fermi level in type-II WSMs have recently been shown to produce interesting effects such as a chiral anomaly induced longitudinal magnetoresistance that is strongly anisotropic in direction and a novel anomalous Hall effect. In this work, we consider the anomalous Nernst effect in type-II WSMs in the absence of an external magnetic field using the framework of semi-classical Boltzmann theory. Based on both a linearized model of time-reversal breaking WSM with a higher energy cut-off and a more realistic lattice model, we show that the anomalous Nernst response in these systems is strongly anisotropic in space, and can serve as a reliable signature of type-II Weyl semimetals in a host of magnetic systems with spontaneously broken time reversal symmetry.  相似文献   

15.
We investigate the electronic properties of graphene nanoribbons with attachment of bearded bonds as a model of edge modification. The main effect of the addition of the beards is the appearance of additional energy subbands. The originally gapless armchair graphene nanoribbons become semiconducting. On the other hand, the originally semiconducting armchair graphene nanoribbons may or may not change to gapless systems depending on the width. With the inclusion of a transverse electric field, the band structures of bearded graphene nanoribbons are further altered. An electric field creates additional band-edge states, and changes the subband curvatures and spacings. Furthermore, the energy band symmetry about the chemical potential is lifted by the field. With varying width, the bandgap demonstrates a declining zigzag behavior, and touches the zero value regularly. Modifications in the electronic structure are reflected in the density of states. The numbers and energies of the density of state divergent peaks are found to be strongly dependent on the geometry and the electric field strength. The beard also causes electron transfer among different atoms, and alters the probability distributions. In addition, the electron transfers are modified by the electric field. Finally, the field introduces more zero values in the probability distributions, and removes their left–right symmetry.  相似文献   

16.
采用基于密度泛函理论(DFT)的第一性原理中的平面波超软赝势(PWPP)方法对理想TiO_2,N单掺杂,Pt单掺杂和Pt-N共掺杂锐钛矿相TiO_2的电子结构进行计算,分析N单掺杂、Pt单掺杂及Pt-N共掺杂对锐钛矿相TiO_2的晶体结构、能带和态密度的影响.计算结果表明:掺杂后TiO_2的晶格发生畸变,原子间键长的变化使晶格发生膨胀,Pt单掺杂、N单掺杂TiO_2禁带宽度变窄,Pt-N共掺杂TiO_2分别在价带顶和导带底产生杂质能级,且禁带宽度缩小范围大,表明Pt-N共掺杂能进一步提高锐钛矿TiO_2催化性能.  相似文献   

17.
A new approach, which makes the Hamiltonian of the Peierls tight-binding model change into a band matrix, is used to investigate the Landau levels in a AA-stacked bilayer graphene. The interlayer atomic hoppings could induce an energy gap, the asymmetry of the Landau levels about the chemical potential, the random variation in the level spacing, more fourfold degenerate Landau levels at low energy, and the oscillatory Landau levels and the complicated state degeneracies at moderate energy. For the low-energy Landau levels, their dependence on the quantum number and the field strength cannot be well characterized by a simple power law. They exhibit a anomalous oscillation during the variation of the magnetic field. The main features of the magnetoelectronic states are directly reflected in density of states.  相似文献   

18.
利用基于密度泛函理论的第一性原理平面波超软赝势方法对锐钛矿相TiO_2、La单掺杂及La-N共掺杂锐钛矿相TiO_2的电子结构进行计算,分析La单掺杂及La-N共掺杂对锐钛矿相TiO_2的晶体结构、能带、态密度、差分电荷密度和光吸收性质的影响.结果表明,掺杂后TiO_2的晶格发生畸变,原子间键长的变化使晶格发生膨胀;掺杂后TiO_2的禁带宽度减小,并在禁带中引入杂质能级,导致TiO_2的吸收图谱产生红移现象;与La单掺杂相比,La-N共掺杂锐钛矿相TiO_2的红移程度增强.  相似文献   

19.
利用基于密度泛函理论的第一性原理平面波超软赝势方法对锐钛矿相TiO2、La单掺杂及La-N共掺杂锐钛矿相TiO2的电子结构进行计算,分析La单掺杂及La-N共掺杂对锐钛矿相TiO2的晶体结构、能带、态密度、差分电荷密度和光吸收性质的影响. 结果表明,掺杂后TiO2的晶格发生畸变,原子间键长的变化使晶格发生膨胀;掺杂后TiO2的禁带宽度减小,并在禁带中引入杂质能级,导致TiO2的吸收图谱产生红移现象;与La单掺杂相比,La-N共掺杂锐钛矿相TiO2的红移程度增强.  相似文献   

20.
We calculate the density of states (DOS) of the conduction bands (CB) of CuCl and CuBr and show that the two high density regions originate from the bands where the states are mainly of p-type symmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号