首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
We elucidate constraints imposed by confinement and dynamical chiral symmetry breaking on the infrared behaviour of the dressed-quark and -gluon propagators, and dressed-quark-gluon vertex. In covariant gauges the dressing of the gluon propagator is completely specified by , where Π(k2) is the vacuum polarisation. In the absence of particle-like singularities in the dressed-quark-gluon vertex, extant proposals for the dressed-gluon propagator that manifest and neither confine quarks nor break chiral symmetry dynamically. This class includes all existing estimates of via numerical simulations.  相似文献   

2.
3.
We compute quark and gluon propagators in 2-colour QCD at large baryon chemical potential μ. The gluon propagator is found to be antiscreened at intermediate μ and screened at large μ. The quark propagator is drastically modified in the superfluid region as a result of the formation of a superfluid gap.  相似文献   

4.
We discuss the operator formulation of the Zachariasen-Thirring model, describing the chain approximation to the propagator (the sum of three-particle massless bubbles) in massless λ4 theory. Such a model is formally scale-invariant and explicitly soluble. All intermediate steps of conventional renormalization procedure, regularization, introduction of appropriate counterterms, and cut-off free limit, are explicitly performed. In every step the scaling properties are discussed and respective dilatation currents are written down. After the proper choice of scale transformations for the renormalized field operator, we obtain the nonlocal dilatation current, defining the renormalized dilatation generator DΛR(t). In the cut-off free limit Λ → ∞ the ET commutator of DΛR(t) with renormalized field operators reproduces the Callan-Symanzik modification of “naive” canonical scale transformations. The renormalized scale transformations coincide in the cut-off free limit with renormalized dimensional transformations and define the exact symmetry of the renormalized theory.  相似文献   

5.
Flow propagators, used for the study of advective motion of brine solution in porous carbonate and sandstone rocks, have been obtained without the influence of Nuclear Magnetic Resonance (NMR) relaxation times, T1 and T2. These spin relaxation mechanisms normally result in a loss of signal that varies depending on the displacement ζ of the flowing spins, thereby preventing the acquisition of quantitative propagator data. The full relaxation behaviour of the system under flow needs to be characterised to enable the implementation of a true quantitative measurement. Two-dimensional NMR correlations of ζ − T2 and T1 − T2 are used in combination to provide the flow propagators without relaxation weighting. T1 − ζ correlations cannot be used due to the loss of T1 information during the displacement observation time Δ. Here the moments of the propagators are extracted by statistical analysis of the full propagator shape. The measured displacements (first moments) are seen to correlate with the expected mean displacements for long observation times Δ. The higher order moments of the propagators determined by this method indicate those obtained previously using a correction were overestimated.  相似文献   

6.
We argue that the idea that the dynamics of a gauge theory simplifies in the limit N → ∞, where N is the number of colors, can be invoked even if the gauge group is an exceptional Lie group, rather than one of the classical groups. We also point out that quantum tunneling phenomena can in some cases survive in the N → ∞ limit, contrary to the usual claim that the N → ∞ limit is “classical.”  相似文献   

7.
8.
A new approach to the theory of temporal aberration for cathode lenses is given in the present paper. A definition of temporal aberration is given in which a certain initial energy of electron emission along the axial direction εz1 (0εz1ε0max) is considered. A new method to calculate the temporal aberration coefficients of cathode lenses named “direct integral method” is also presented. The “direct integral method” gives new expressions of the temporal aberration coefficients which are expressed in integral forms. The difference between “direct integral method” and “τ-variation method” is that the “τ-variation method” needs to solve the differential equations for the three of temporal geometrical aberration coefficients of second order, while the “direct integral method” only needs to carry out the integral calculation for all of these temporal aberration coefficients of second order.All of the formulae of the temporal aberration coefficients deduced from “direct integral method” and “τ-variation method” have been verified by an electrostatic concentric spherical system model, and contrasted with the analytical solutions. Results show that these two methods have got identical solutions and the solutions of temporal aberration coefficients of the first and second order are the same as with the analytical solutions. Although some forms of the results seem different, but they can be transformed into the same form. Thus, it can be concluded these two methods given by us are equivalent and correct, but the “direct integral method” is related to solve integral equations, which is more convenient for computation and could be suggested for use in practical design.  相似文献   

9.
The properties of elementary particles are encoded in their respective propagators and interaction vertices. For a SU(2) gauge theory coupled to a doublet of fundamental complex scalars these propagators are determined in both the Higgs phase and the confinement phase and compared to the Yang–Mills case, using lattice gauge theory. Since the propagators are gauge dependent, this is done in the Landau limit of the ’t Hooft gauge, permitting to also determine the ghost propagator. It is found that neither the gauge boson nor the scalar differ qualitatively in the different cases. In particular, the gauge boson acquires a screening mass, and the scalar’s screening mass is larger than the renormalized mass. Only the ghost propagator shows a significant change. Furthermore, indications are found that the consequences of the residual non-perturbative gauge freedom due to Gribov copies could be different in the confinement and the Higgs phase.  相似文献   

10.
We show that the K–K spectrum of IIB string on is described by “twisted chiral” superfields, naturally described in “harmonic superspace”, obtained by taking suitable gauge singlets polynomials of the D3-brane boundary superconformal field theory.To each p-order polynomial is associated a massive K–K short representation with states. The quadratic polynomial corresponds to the “supercurrent multiplet” describing the “massless” bulk graviton multiplet.  相似文献   

11.
In order to describe the dynamics of the tJ model, two different families of first-order Lagrangians in terms of the generators of the Hubbard algebra are found. Such families correspond to different dynamical second-class constrained systems. The quantization is carried out by using the path-integral formalism. In this context the introduction of proper ghost fields is needed to render the model renormalizable. In each case the standard Feynman diagrammatics is obtained and the renormalized physical quantities are computed and analyzed. In the first case a nonperturbative large-N expansion is considered with the purpose of studying the generalized Hubbard model describing N-fold-degenerate correlated bands. In this case the 1/N correction to the renormalized boson propagator is computed. In the second case the perturbative Lagrangian formalism is developed and it is shown how propagators and vertices can be renormalized to each order. In particular, the renormalized ferromagnetic magnon propagator coming from our formalism is studied in details. As an example the thermal softening of the magnon frequency is computed. The antiferromagnetic case is also analyzed, and the results are confronted with previous one obtained by means of the spin-polaron theories.  相似文献   

12.
We investigated the generic phase diagram of the electron doped superconductor, Nd2−xCexCuO4, using films prepared by metal organic decomposition. After careful oxygen reduction treatment to remove interstitial Oap atoms, we found that the Tc increases monotonically from 24 K to 29 K with decreasing x from 0.15 to 0.00, demonstrating a quite different phase diagram from the previous bulk one. The implication of our results is discussed on the basis of tremendous influence of Oap “impurities” on superconductivity and also magnetism in T′ cuprates. Then we conclude that our result represents the generic phase diagram for oxygen-stoichiometric Nd2−xCexCuO4.  相似文献   

13.
Symmetries and dynamics of wave nodes in space and time expose principles of quantum theory and its relativistic underpinning. Among these are key principles behind recently discovered dephasing and rephasing phenomena known as revivals. A reexamination of basic Eberly revivals, Berry “quantum fractal” landscapes, and the “quantum carpets” of Schleich and co-workers reveals a simple Farey arithmetic and Cn-group revival structure in one of the earliest quantum wave models, the Bohr rotor. These principles may be useful for interpreting modern time-dependent rovibrational spectra. The nodal dynamics of the Bohr rotor is seen to have a quasi-fractal structure similar to that of earlier systems involving chaotic circle maps. The fractal structure is an overlay of discrete versions of Bohr's rotor model. Each N-point Bohr rotor acts like a base-N quantum “odometer” which performs rational fraction arithmetic. Such systems may have applications for optical information technology and quantum computing.  相似文献   

14.
We present a phenomenological theory of the homogeneous orbital dynamics of the class of “separable” anisotropic superfluid phases which includes the ABM state generally identified with 3He-A. The theory is developed by analogy with the spin dynamics described in the first paper of this series; the basic variables are the orientation of the Cooper-pair wavefunction (in the ABM phase, the l-vector) and a quantity K which we visualize as the “pseudo-angular momentum” of the Cooper pairs but which must be distinguished, in general, from the total orbital angular momentum of the system. In the ABM case l is the analog of d in the spin dynamics and K of the “superfluid spin” Sp. Important points of difference from the spin case which are taken into account include the fact that a rotation of l without a simultaneous rotation of the normal-component distribution strongly increases the energy of the system (“normal locking”), and that the equilibrium value of K is zero even for finite total angular momentum. The theory does not claim to handle correctly effects associated with any intrinsic angular momentum arising from particle-hole asymmetry, but it is shown that the magnitude of this quantity can be estimated directly from experimental data and is extremely small; also, the Landau damping does not emerge automatically from the theory, but can be put in in an ad hoc way. With these provisos the theory should be valid for all frequencies irrespective of the value of ωτ. (Δ = gap parameter, τ = quasi-particle relaxation time.) It disagrees with all existing phenomenological theories of comparable generality, although the disagreement with that of Volovik and Mineev is confined to the “gapless” region very close to Tc.The phenomenological equations of motion, which are similar in general form to those of the spin dynamics with damping, involve an “orbital susceptibility of the Cooper pairs” χorb(T). We give a possible microscopic definition of the variable K and use it to calculate χorb(T) for a general phase of the “separable” type. The theory is checked by inserting the resulting formula in the phenomenological equations for ωτ 1 and comparing with the results of a fully microscopic calculation based on the collisionless kinetic equation; precise agreement is obtained for both the ABM and the (real) polar phase, showing that the complex nature of the ABM phase and the associated “pair angular momentum” is largely irrelevant to its orbital dynamics. We note also that the phenomenological theory gives a good qualitative picture even when ω Δ(T), e.g., for the flapping mode near Tc. Our theory permits a simple and unified calculation of (1) the Cross-Anderson viscous torque in the overdamped regime, (2) the flapping-mode frequency near zero temperature, (3) orbital effects on the NMR, both at low temperatures and near Tc, (4) the orbit wave spectrum at zero temperature (this requires a generalization to inhomogeneous situations which is possible at T = 0 but probably not elsewhere). We also discuss the possibility of experiments of the Einstein-de Haas type. Generally speaking, our results for any one particular application can be also obtained from some alternative theory, but in the case of orbital and spin relaxation very close to Tc (within the “gapless” region) our predictions, while somewhat tentative and qualitative, appear to disagree with those of all existing theories. We discuss briefly how our approach could be extended to apply to more general phases.  相似文献   

15.
NMR imaging and one- and two-dimensional self-diffusion propagator measurements of the liquid phase in salt water ice are presented. The properties of the network of brine-filled pores are found to depend on the growth conditions of the ice. Two types of samples are compared: (a) shock-frozen ice produced in the probe in situ and (b) ice grown over several hours under controlled conditions. By shock-freezing, an ice structure could be produced which featured streak-like porous channels of diameters of up to 300 μm allowing almost unrestricted self-diffusion along one preferential axis but reduced diffusivities in the remaining directions. In ice grown under controlled conditions, the pore sizes are near the resolution limit of the imaging experiment of typically 50 μm. For this type of samples, strongly non-Gaussian self-diffusion propagators are obtained, indicating restricted self-diffusion on rms scales of 30 μm. Common to all samples was the observation of highly anisotropic self-diffusion. One- and two-dimensional propagators are compared in order to estimate the degree of anisotropy and the size of the restrictions.  相似文献   

16.
The results of Coulomb gauge and Landau gauge lattice QCD simulation do not agree completely with continuum theory. There are indications that the ghost propagator in the infrared region has strong fluctuation whose modulus is compatible with that of the color diagonal ghost propagator. After presenting lattice simulation of configurations produced with Kogut–Susskind fermion (MILC collaboration) and those with domain wall fermion (RBC/UKQCD collaboration), I investigate in triple gluon vertex and the ghost–gluon–ghost vertex how the square of the color antisymmetric ghost contributes. Then the effect of the vertex correction to the gluon propagator and the ghost propagator is investigated. Recent Dyson–Schwinger equation analysis suggests the ghost dressing function G(0) = finite and no infrared enhancement or α G  = 0. But the ghost propagator renormalized by the loop containing a product of color antisymmetric ghost is expected to behave as with with α G = 0.5, if the fixed point scenario is valid. I interpret the α G  = 0 solution should contain a vertex correction. The infrared exponent of our lattice Landau gauge gluon propagator of the RBC/UKQCD is α D  = − 0.5 and that of MILC is about − 0.7. A possible interpretation of the origin of the fluctuation is given.  相似文献   

17.
The asymptotic safety scenario in gravity is accessed within the systematic vertex expansion scheme for functional renormalisation group flows put forward in Christiansen et al. (Phys Lett B 728:114, 2014), Christiansen et al. (Phy Rev D 93:044036, 2016), and implemented in Christiansen et al. (Phys Rev D 92:121501, 2015) for propagators and three-point functions. In the present work this expansion scheme is extended to the dynamical graviton four-point function. For the first time, this provides us with a closed flow equation for the graviton propagator: all vertices and propagators involved are computed from their own flows. In terms of a covariant operator expansion the current approximation gives access to \(\Lambda \), R, \(R^2\) as well as \(R_{\mu \nu }^2\) and higher derivative operators. We find a UV fixed point with three attractive and two repulsive directions, thus confirming previous studies on the relevance of the first three operators. In the infrared we find trajectories that correspond to classical general relativity and further show non-classical behaviour in some fluctuation couplings. We also find signatures for the apparent convergence of the systematic vertex expansion. This opens a promising path towards establishing asymptotically safe gravity in terms of apparent convergence.  相似文献   

18.
A systematic study of the ground state, excitation spectrum, and “isospin-magnetic” properties of the U(1)-Thirring model, based on its exact (Bethe-ansatz) solution, is presented. The exact results obtained for the renormalized mass spectrum in all sectors of the phase diagram of the model allow us to observe a continuous transition from the weak-coupling theory into a strong-coupling (asymptotically free) regime, taking place by varying the coupling constants, g and g. Some questions concerning universality and the relation to other models are discussed.  相似文献   

19.
We describe the fabrication and optical properties of a 3λ/2 InGaN/GaN-based microcavity using “upper” and “lower” silica/zirconia mirrors. The fabrication of this structure involved selective removal of an AlInN layer following multistep thinning of a free-standing GaN substrate. Photoluminescence spectra show a narrowing of the excitonic emission from InGaN/GaN quantum wells in the microcavity, giving a cavity quality factor Q exceeding 400.  相似文献   

20.
Gas-phase and catalytic combustion in heat-recirculating burners   总被引:5,自引:0,他引:5  
An experimental study of a spiral counterflow “Swiss roll” burner was conducted, with emphasis on the determination of extinction limits and comparison of results with and without bare-metal Pt catalyst. A wide range of Reynolds numbers (Re) were tested using propane–air mixtures. Both lean and rich extinction limits were extended with the catalyst, though rich limits were extended much further. With the catalyst, combustion could be sustained at Re as low as 1.2 with peak temperatures as low as 350 K. A heat transfer parameter characterizing the thermal performance of both gas-phase and catalytic combustion at all Re was identified. At low Re, the “lean” extinction limit was actually rich of stoichiometric, and rich-limit had equivalence ratios exceeded 40 in some cases. No corresponding behavior was observed without the catalyst. Gas-phase combustion, in general, occurred in a “flameless” mode near the burner center. With or without catalyst, for sufficiently robust conditions (high Re, near-stoichiometric) not requiring heat recirculation, a visible flame would propagate out of the center, but this flame could only be re-centered if the catalyst were present. Gas chromatography indicated that at low Re, even in extremely rich mixtures, CO and non-propane hydrocarbons did not form. For higher Re, where both gas-phase and catalytic combustion could occur, catalytic limits were slightly broader but had much lower limit temperatures. At sufficiently high Re, catalytic and gas-phase limits merged. It is concluded that combustion at low Re in heat-recirculating burners greatly benefits from catalytic combustion with the proper choice of mixtures that are different from those preferred for gas-phase combustion. In particular, the importance of providing a reducing environment for the catalyst to enhance O2 desorption, especially at low Re where heat losses are severe thus peak temperatures are low, is noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号