首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
If nonlocality is to be inferred from a violation of Bell's inequality, an important assumption is that the measurement settings are freely chosen by the observers, or alternatively, that they are random and uncorrelated with the hypothetical local variables. We demonstrate a connection between models that weaken this assumption, allowing partial correlation, and (i) models that allow classical communication between the distant parties, (ii) models that exploit the detection loophole. Even if Bob's choices are completely independent, all correlations from projective measurements on a singlet can be reproduced, with mutual information between Alice's choice and local variables less than or equal to one bit.  相似文献   

2.
Tests such as Bell's inequality and Hardy's paradox show that joint probabilities and correlations between distant particles in quantum mechanics are inconsistent with local realistic theories. Here we experimentally demonstrate these concepts in the time domain, using a photonic entangling gate to perform nondestructive measurements on a single photon at different times. We show that Hardy's paradox is much stronger in time and demonstrate the violation of a temporal Bell inequality independent of the quantum state, including for fully mixed states.  相似文献   

3.
It is shown that the violation of Bell's inequality allowed by quantum mechanics and the related Bell's theorem without inequalities is accounted for by local commutations of operators representing single-particle observables. It is argued that the idea of nonlocal influencing of one particle on another when they are in spacelike separated regions clearly has neither empirical nor theoretical support.  相似文献   

4.
符建  高淑娟 《中国物理快报》2008,25(7):2350-2353
We numerically demonstrate that 'mode-entangled states' based on the transverse modes of classical optical fields in multimode waveguides violate Bell's inequality. Numerically simulating the correlation measurement scheme of Bell's inequality, we obtain the normalized correlation functions of the intensity fluctuations for the two entangled classical fields. By using the correlation functions, the maximum violations of Bell's inequality are obtained. This implies that the two classical fields in the mode-entangled states, although spatially separated, present a nonlocal correlation.  相似文献   

5.
We claim that physics has been constructed because three “philosophical” principles have been respected, namely, realism, locality, and consistency. These principles lead to an interpretation of quantum mechanics (QM) in terms of local hidden-variables theories (LHV). In order to prove that LHV have not been refuted, we analyze the empirical proofs of Bell's inequalities and we argue that none is loophole-free. Then we propose a restricted QM that does not contain measurement postulates and that does not claim that all state vectors (self-adjoint operators) are states (observables). The contradiction of such restricted QM with Bell's inequality cannot be shown as a theorem, but only by the design of a loophole-free experiment. Finally, we argue that noise has been underestimated in quantum theory. It does not appear in QM, but it is essential in quantum field theory. We conjecture that noise will prevent the violation of Bell's inequality.  相似文献   

6.
An abstract treatment of Bell inequalities in proposed, in which the parameters characterizing Bell's observable can be times rather than directions. The violation of a Bell inequality might then be taken to mean that a property of a system can be changed by the timing of a distant measurement, which could take place in the future.  相似文献   

7.
The purpose of this paper is to deduce an analytical expression for the violation of Bell's inequality by quantum theory and plane trigonometry, and expound the violation and maximal violation of the first, second type Bell's inequality in detail. Further, we find out the sufficient conditions for the region in which Bell's inequalities are violated.  相似文献   

8.
J. Silman  S. Machnes 《Physics letters. A》2008,372(21):3796-3800
We investigate the relation between Bell's inequalities and nonlocal games by presenting a systematic method for their bilateral conversion. In particular, we show that while to any nonlocal game there naturally corresponds a unique Bell's inequality, the converse is not true. As an illustration of the method we present a number of nonlocal games that admits better odds when played using quantum resources.  相似文献   

9.
Quantum nonlocality has been experimentally investigated by testing different forms of Bell's inequality, yet a loophole-free realization has not been achieved up to now. Much less explored are temporal Bell inequalities, which are not subject to the locality assumption, but impose a constraint on the system's time correlations. In this Letter, we report on the experimental violation of a temporal Bell's inequality using a nitrogen-vacancy (NV) defect in diamond and provide a novel quantitative test of quantum coherence. Such a test requires strong control over the system, and we present a new technique to initialize the electronic state of the NV with high fidelity, a necessary requirement also for reliable quantum information processing and/or the implementation of protocols for quantum metrology.  相似文献   

10.
We consider a measurement of correlated spins at LEP and show that it does not constitute a general test of local-realistic theories via Bell's inequality. The central point of the argument is that such tests, where the spins of two particles are inferred from a scattering distribution, can be described by a local hidden variable theory. We conclude that with present experimental techniques it is not possible to test locality via Bell's inequality at a collider experiment. Finally we suggest an improved fixed-target it is not possible to test locality via Bell's inequality at a collider experiment. Finally we suggest an improved fixed-target experiment as a viable test of Bell's inequality.  相似文献   

11.
We investigate the nonlocal properties of graph states. To this aim, we derive a family of Bell inequalities which require three measurement settings for each party and are maximally violated by graph states. In turn, for each graph state there is an inequality maximally violated only by that state. We show that for certain types of graph states the violation of these inequalities increases exponentially with the number of qubits. We also discuss connections to other entanglement properties such as the positivity of the partial transpose or the geometric measure of entanglement.  相似文献   

12.
Stronger-Than-Quantum Correlations   总被引:1,自引:0,他引:1  
After an elementary derivation of Bell's inequality, classical, quantum mechanical, and stronger-than-quantum correlation functions for 2-particle-systems are discussed. Special functions are investigated which give rise to an extreme violation of Bell's inequality by the value of 4. Referring to a specific quantum system it is shown that under certain conditions such an extreme violation would contradict basic laws of physics.  相似文献   

13.
We prove that for every Bell's inequality, including those which are not yet known, there always exists a communication complexity problem, for which a protocol assisted by states which violate the inequality is more efficient than any classical protocol. Violation of Bell's inequalities is the necessary and sufficient condition for quantum protocol to beat the classical ones.  相似文献   

14.
Bell's theorem guarantees that no model based on local variables can reproduce quantum correlations. Also, some models based on nonlocal variables, if subject to apparently "reasonable" constraints, may fail to reproduce quantum physics. In this Letter, we introduce a family of inequalities, which use a finite number of measurement settings, and which therefore allow testing Leggett's nonlocal model versus quantum physics. Our experimental data falsify Leggett's model and are in agreement with quantum predictions.  相似文献   

15.
The conditions on the relative frequencies of coincidence between the measurements on two physical systems are deduced, in the particular case of four different directions, from Kolmogorovian probability and the Gutkowski and Valdes-Franco computational method. These conditions are compared with those imposed by Bell's inequality. It is proved that Bell's inequality is a necessary but not a sufficient condition for local Kolmogorovian probability. The further assumptions to be added to Bell's inequality, in order to prove the equivalence with local Kolmogorovian probability, are studied. The connection with the results obtained by other authors on the subject is discussed.  相似文献   

16.
The proof of Bell's inequality is based on the assumption that distant observers can freely and independently choose their experiments. As Bell's inequality isexperimentally violated, it appears that distant physical systems may behave as a single, nonlocal, indivisible entity. This apparent contradiction is resolved. It is shown that the free will assumption is, under usual circumstances, an excellent approximation.I have set before you life and death, blessing and cursing: therefore choose life....

相似文献   


17.
刘治 《大学物理》2005,24(10):39-43
介绍了贝尔不等式的建立及20世纪70年代以来对它的实验验证.对贝尔不等式与量子力学基本解释的关系的深入研究,加速了“纠缠态”及其品性的发现,推动了量子信息“热”的兴起。  相似文献   

18.
Bell inequality is an important resource in the quantum information theory, which can be applied to guarantee security of the device independent quantum information protocols. By utilizing the quantum weak measurement technology, we propose the Chain inequality violation with three parties, and the analysis result demonstrates that double Chain inequality violation can be observed in the case of Alice and Bob have two different measurement bases.Since the weak measurement model can be assumed to be an eavesdropping model, our analysis model may be applied to analyze security of the device independent quantum information protocols.  相似文献   

19.
Many argued (Accardi and Fedullo, Pitowsky) that Kolmogorov's axioms of classical probability theory are incompatible with quantum probabilities, and that this is the reason for the violation of Bell's inequalities. Szabó showed that, in fact, these inequalities are not violated by the experimentally observed frequencies if we consider the real, “effective” frequencies. We prove in this work a theorem which generalizes this results: “effective” frequencies associated to quantum events always admit a Kolmogorovian representation, when these events are collected through different experimental setups, the choice of which obeys a classical distribution.  相似文献   

20.
We propose a promising electron entanglement detector consisting of two quantum spin Hall systems weakly coupled to a superconductor. The detection of electron spins along various polarization directions, which is a prerequisite for testing Bell's inequality on solid state spins, can be achieved in an all-electrical-controlled manner utilizing the helical edge states. It is found that the violation of Bell's inequality exists in a large range of the tunneling parameters, which can be realized in mercury telluride quantum wells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号