首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
DNA/cationic surfactant interaction is relevant from the viewpoint of gene therapy, where the complexation and resulting compaction are essential to protect DNA from nuclease, and to allow entry of DNA into cells. In this work, light input and host-guest inclusion controlled DNA complexation by a novel cationic surfactant 1-[6-(4-phenylazo-phenoxy)-hexyl]-3-methylimidazolium bromide (AzoC6Mim) is reported. The surfactant is covalently attached with an azobenzene group, which undergoes reversible photoisomerizations by changing light input. Under visible light, trans-AzoC6Mim can bind to salmon sperm DNA through electrostatic attraction and hydrophobic interaction, resulting into DNA compaction. Under UV light, although cis-AzoC6Mim still binds to DNA chain, DNA/surfactant complex is decompacted owing to the decrease of surfactant hydrophobicity. On the other hand, azobenzene group can form an inclusion complex with α-CD through host-guest interaction, which removes AzoC6Mim from DNA chain and decompacts the DNA/surfactant complex.  相似文献   

2.
The surface properties of a nonionic photoresponsive surfactant that incorporates the light-sensitive azobenzene group into its tail have been investigated. Cis-trans photoisomerization of this azobenzene group alters the ability of the surfactant to pack into adsorbed monolayers at an air/water interface or into aggregates in solution, thereby causing a significant variation in surface and bulk properties following a change in the illumination conditions. NMR studies indicate that a solution left in the dark for an extended period of time contains the trans isomer almost exclusively, whereas samples exposed to light of fixed wavelength eventually reach a photostationary equilibrium in which significant amounts of both isomers are present. At concentrations well above the cmc but under different illumination conditions (dark, UV light, visible light), freshly formed surfaces exhibit profoundly different surface tension trajectories as they approach essentially identical equilibrium states. This common equilibrium state corresponds to a surface saturated with the trans (more surface active) isomer. The dark sample shows a simple, single-step relaxation in surface tension after the creation of a fresh interface, whereas the UV and visible samples exhibit a more rapid initial decrease in tension, followed by a plateau of nearly constant tension, and finally end with a second relaxation to equilibrium. It is hypothesized that this behavior of the UV and visible samples is caused by competitive adsorption between the cis and trans isomers present in these mixtures. The cis surfactant reaches the interface more quickly, leading to an initially cis-dominated interface having a tension value corresponding to the intermediate plateau, but is ultimately displaced by the trans isomer. Fluorescence studies are used for cmc determination in the samples, and the results suggest that the two isomers segregate into distinct aggregate phases. The critical concentration associated with the formation of cis-rich aggregates is much larger than that of the trans-rich aggregates, which accounts for the faster diffusion of the cis isomer to a fresh interface. Models of the diffusion and adsorption of surfactant are developed. These consider the role of aggregates in the adsorption process by examining the limiting behavior of three aggregate properties: dissolution rate, mobility, and ability to incorporate into the interface. These models are used to analyze the surface tension relaxation of dark and UV samples, and the predictions are found to be in agreement with the observed characteristic relaxation time scales for these samples, though the results are inconclusive regarding the specific role of aggregates. High-intensity illumination focused on a surface saturated with surfactant is used to drive photoisomerization of the adsorbed surfactant, and rapid, substantial changes in surface tension result. These changes are consistent with proposed conformations of the adsorbed surfactant and with monolayer studies performed with a Langmuir film balance.  相似文献   

3.
This paper reports on the microstructures formed in aqueous solutions containing mixtures of sodium dodecyl sulfate (SDS) and a photosensitive, bolaform surfactant, bis(trimethylammoniumhexyloxy)azobenzene dibromide (BTHA). By using quasi-elastic light scattering and small-angle neutron scattering, we determined that aqueous solutions containing SDS and the trans isomer of BTHA (0.1 wt % total surfactant, 15 mol % BTHA, 85 mol % SDS) form vesicles with average hydrodynamic diameters of 1350 +/- 50 angstroms and bilayer thicknesses of 35 +/- 2 angstroms. The measured bilayer thickness is consistent with a model of the vesicle bilayer in which the trans isomer of BTHA spans the bilayer. Upon illumination with UV light, the BTHA underwent photoisomerization to produce a cis-rich photostationary state (80% cis isomer). We measured this photoisomerization to drive the reorganization of vesicles into cylindrical aggregates with cross-sectional radii of 19 +/- 3 angstroms and average hydrodynamic diameters of 240 +/- 50 angstroms. Equilibration of the cis-rich solution in the dark at 25 degrees C for 12 h or illumination of the solution with visible light leads to the recovery of the trans-rich photostationary state of the solution and the reformation of vesicles, thus demonstrating the potential utility of this system as the basis of a tunable fluid.  相似文献   

4.
SnO nanoparticles have been successfully synthesized in the presence of Triton-X 100 (TX-100) surfactant via hydrothermal method for the first time, and the photocatalytic activity under UV and visible light irradiation for the degradation of Methylene Blue (MB) and Rhodamine B (RdB) organic textile dyes was investigated. The structural, morphological and chemical characterizations were investigated by using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), selected area electron diffraction (SAED), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR), UV–vis. diffuse reflectance spectroscopy (UV–vis DRS) and photoluminescence (PL) analysis. The results reveal that the addition of surfactant, TX-100, in the precursor solutions leads to reduction in crystallite size with significant changes in morphological structure of SnO nanoparticles. The synthesized SnO nanoparticles show excellent photocatalytic activity under UV or visible light irradiation. MB and RdB dyes degraded completely under UV irradiation after 90 and 150 min, respectively. Also, MB and RdB dyes degraded only 150 min later under visible light illumination with a little amount of photocatalyst (0.8 g/L). Hence, this work explores the facile route to synthesizing efficient SnO nanoparticles for degrading organic compound under both UV and visible light irradiations.  相似文献   

5.
Fluorescence microscopy was used to investigate the conformational changes of individual T4 DNA molecules induced by different compacting agents, namely the cationic surfactants, cetyltrimethylammonium bromide (CTAB) and chloride (CTAC), iron(III), lysozyme, and protamine sulfate. A protocol for establishing size estimates is suggested to obtain reproducible results. Observations show that in the presence of lysozyme and protamine sulfate, DNA molecules exhibit a conformational change from an elongated coil structure to compact globules, usually interpreted as a first-order transition. The maximum degree of compaction that is attained when iron(III) or CTAB (CTAC) are used as compacting agents is considerably smaller, and intermediate structures (less elongated coils) are visible even for high concentrations of these agents. Dynamic light scattering experiments were carried out, for some of the systems, to assess the reliability of size estimates from fluorescence microscopy.  相似文献   

6.
By means of combined calorimetric and dynamic light-scattering measurements, we have investigated the conformational behavior of DNA chains after thermal melting in the presence of a cationic surfactant at different concentrations, up to a surfactant-to-phosphate group molar ratio close to unity. Both the specific heat capacity, C(ex)(p) and the hydrodynamic radius R of the DNA chains provide support for the existence of two structural arrangements with different thermal stabilities, coexisting in the bulk solution. Although a component remains an elongated unfolded DNA chain originated in the thermal denaturation, the second component, consisting of DNA-surfactant complexes, assumes a compact structure with an average size of about 80 nm, whose thermal denaturation occurs at temperatures higher than 100 degrees C.  相似文献   

7.
We report light and small-angle neutron scattering measurements that characterize microstructures formed in aqueous surfactant solutions (up to 1.0 wt % surfactant) containing mixtures of sodium dodecyl sulfate (SDS) and the light-sensitive bolaform surfactant, bis(trimethylammoniumhexyloxy)azobenzene dibromide (BTHA) as a function of composition, equilibration time, and photostationary state (i.e., solutions rich in cis-BTHA or trans-BTHA). We observed formation of vesicles in both SDS-rich and trans-BTHA-rich regions of the microstructure diagram, with vesicles present over a particularly broad range of compositions for trans-BTHA-rich solutions. Illumination of mixtures of BTHA and SDS with a broadband UV light source leads to formation of photostationary states where the fraction of BTHA present as cis isomer (75-80% cis-BTHA) is largely independent of the mixing ratio of SDS and BTHA. For a relatively limited set of mixing ratios of SDS and BTHA, we observed UV illumination of SDS-rich vesicles to result in the reversible transformation of the vesicles to micellar aggregates and UV illumination of BTHA-rich vesicles to result in irreversible precipitation. Surprisingly, however, for many mixtures of trans-BTHA and SDS that formed solutions containing vesicles, illumination with UV light (which was confirmed to lead to photoisomerization of BTHA) resulted in only a small decrease in the number of vesicles in solution, relatively little change in the sizes of the remaining vesicles, and coexistance of the vesicles with micelles. These observations are consistent with a physical model in which the trans and cis isomers of BTHA present at the photostationary state tend to segregate between the different microstructures coexisting in solution (e.g., vesicles rich in trans-BTHA and SDS coexist with micelles rich in cis-BTHA and SDS). The results presented in this paper provide guidance for the design of light-tunable surfactants systems.  相似文献   

8.
Recent investigations of the DNA interactions with cationic surfactants and catanionic mixtures are reviewed. Several techniques have been used such as fluorescence microscopy, dynamic light scattering, electron microscopy, and Monte Carlo simulations.

The conformational behaviour of large DNA molecules in the presence of cationic surfactant was followed by fluorescence microscopy and also by dynamic light scattering. These techniques were in good agreement and it was possible to observe a discrete transition from extended coils to collapsed globules and their coexistence for intermediate amphiphile concentrations. The dependence on the surfactant alkyl chain was also monitored by fluorescence microscopy and, as expected, lower concentrations of the more hydrophobic surfactant were required to induce DNA compaction, although an excess of positive charges was still required.

Monte Carlo simulations on the compaction of a medium size polyanion with shorter polycations were performed. The polyanion chain suffers a sudden collapse as a function of the concentration of condensing agent, and of the number of charges on the polycation molecules. Further increase in the concentration increases the degree of compaction. The compaction was found to be associated with the polycations promoting bridging between different sites of the polyanion. When the total charge of the polycations was lower than that of the polyanion, a significant translational motion of the compacting agent along the polyanion was observed, producing only a small-degree of intrachain segregation, which can explain the excess of positive charges necessary to compact DNA.

Dissociation of the DNA–cationic surfactant complexes and a concomitant release of DNA was achieved by addition of anionic surfactants. The unfolding of DNA molecules, previously compacted with cationic surfactant, was shown to be strongly dependent on the anionic surfactant chain length; lower amounts of a longer chain surfactant were needed to release DNA into solution. On the other hand, no dependence on the hydrophobicity of the compacting agent was observed. The structures of the aggregates formed by the two surfactants, after the interaction with DNA, were imaged by cryogenic transmission electron microscopy. It is possible to predict the structure of the aggregates formed by the surfactants, like vesicles, from the phase behaviour of the mixed surfactant systems.

Studies on the interactions between DNA and catanionic mixtures were also performed. It was observed that DNA does not interact with negatively charged vesicles, even though they carry positive amphiphiles; however, in the presence of positively charged vesicles, DNA molecules compact and adsorb on their surface.

Finally Monte Carlo simulations were performed on the adsorption of a polyelectrolyte on catanionic surfaces. It was observed that the mobile charges in the surface react to the presence of the polyelectrolyte enabling a strong degree of adsorption even though the membrane was globally neutral. Our observations indicate that the adsorption behaviour of the polyelectrolyte is influenced by the response given by the membrane to its presence and that the number of adsorbed beads increases drastically with the increase of flexibility of the polymer. Calculations involving polymers with three different intrinsic stiffnesses showed that the variation is non-monotonic. It was observed also that a smaller polyanion typically adsorbs more completely than the larger one, which indicates that the polarisation of the membrane becomes less facilitated as the degree of disruption increases.  相似文献   


9.
 The extent of association between the cationic surfactant TTAB and a series of hydrophobically modified polyacrylamides (HPAMs) containing an N-n-alkyl and substituted azobenzene hydrophobic sidegroup has been studied utilizing a cationic surfactant-selective membrane electrode. Binding of TTAB to the polymer hydrophobes is found to increase with increasing hydrophobicity of the hydrophobe. In the presence of electrolyte, aqueous solutions of HPAMs and ionic surfactant exhibit an associative phase separation. The temperature or clearing point (CP) at which the system goes from a one phase to two-phase system are reported. The area of the two-phase region is found to increase with increasing electrolyte concentration, hydrophobicity of the hydrophobe for the high molecular weight HPAMs, and decreasing hydrophobicity for low molecular weight HPAMs. Exposure of HPAMs containing an azobenzene hydrophobe to UV light results in a decrease in interaction between the hydrophobe and surfactant and a corresponding decrease in the CP due to conversion of azobenzene from the more hydrophobic trans form to the less hydrophobic cis isomer. Received: 23 September 1996 Accepted: 11 March 1997  相似文献   

10.
The interaction of a light-responsive azobenzene surfactant with bovine serum albumin (BSA) has been investigated as a means to examine photoreversible changes in protein secondary structure. The cationic azobenzene surfactant undergoes a reversible photoisomeriztion upon exposure to the appropriate wavelength of light, with the visible-light (trans) form being more hydrophobic and, thus, inducing a greater degree of protein unfolding than the UV-light (cis) form. Fourier transform infrared (FT-IR) spectroscopy is used to provide quantitative information on the secondary structure elements in the protein (alpha-helices, beta-strands, beta-turns, and unordered domains). Comparing the secondary structure changes induced by light illumination in the presence of the photoresponsive surfactant with previous measurements of the tertiary structure of BSA obtained from small-angle neutron scattering (SANS) allows the three discrete conformation changes in BSA to be fully characterized. At low surfactant concentrations, an alpha-helix --> beta-structure rearrangement is observed as the tertiary structure of BSA changes from a heart-shaped to a distorted heart-shaped conformation. Intermediate surfactant concentrations lead to a dramatic decrease in the alpha-helix fraction in favor of unordered structures, which is accompanied by an unfolding of the C-terminal portion of the protein as evidenced from SANS. Further increases in photosurfactant concentration lead to a beta --> unordered transition with the protein adopting a highly elongated conformation in solution. Each of these protein conformational changes can be precisely and reversibly controlled with light illumination, as revealed through FT-IR spectra collected during repeated visible-light <--> UV-light cycles.  相似文献   

11.
We study the compaction of genomic DNA by a series of alkyltrimethylammonium bromide surfactants having different hydrocarbon chain lengths n: dodecyl-(DTAB, n=12), tetradecyl-(TTAB, n=14) and hexadecyl-(CTAB, n=16), in the absence and in the presence of negatively charged silica nanoparticles (NPs) with a diameter in the range 15-100 nm. We show that NPs greatly enhance the ability of all cationic surfactants to induce DNA compaction and that this enhancement increases with an increase in NP diameter. In the absence of NP, the ability of cationic surfactants to induce DNA compaction increases with an increase in n. Conversely, in the presence of NPs, the enhancement of DNA compaction increases with a decrease in n. Therefore, although CTAB is the most efficient surfactant to compact DNA, maximal enhancement by NPs is obtained for the largest NP diameter (here, 100 nm) and the smallest surfactant chain length (here, DTAB). We suggest a mechanism where the preaggregation of surfactants on NP surface mediated by electrostatic interactions promotes cooperative binding to DNA and thus enhances the ability of surfactants to compact DNA. We show that the amplitude of enhancement is correlated with the difference between the surfactant concentration corresponding to aggregation on DNA alone and that corresponding to the onset of adsorption on nanoparticles.  相似文献   

12.
DNA与非离子糖基表面活性剂相互作用的研究   总被引:4,自引:0,他引:4  
敬登伟  张剑  张高勇 《化学学报》2004,62(6):561-566
用动态表面张力法、键合等温线、紫外光谱及荧光光谱等方法研究了不同链长烷基葡萄糖苷(APG)与DNA的相互作用.研究发现APG对DNA键合可分为两阶段,第一阶段:多苷依靠多羟基结构与DNA形成动力学稳定的复合物;第二阶段:随时间延长,单苷由于其较小的空间位阻而与DNA形成能量更低的热力学稳定复合物.由平衡渗析法得到的单苷与DNA相互作用键合等温线显示,APG与DNA键合为一非协同过程.证实了其非离子氢键吸附的本质,同时也支持了DNA对胶束及预胶束的缠绕模型.紫外光谱结果证明了在APG与DNA作用过程中疏水作用的重要性.以溴化乙锭为探针,荧光光谱法研究证明,随APG链长增加,DNA构象缩拢程度加大,但即使是C2APG也仅能使DNA构象部分缩拢,推测DNA仅是部分链段对APG胶束进行包裹,其它链段仍处于伸展状态.与阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)可使DNA构象强烈缩拢的事实相比,证明了静电作用在大分子与表面活性剂相互作用中的主导性.  相似文献   

13.
A multifaceted study on the interaction of the cationic surfactant CTAB with calf thymus DNA was carried out by using different techniques. The measurements were done at different molar ratios X = [CTAB]/[DNA]. Results show the conformational change that DNA suffers due to the interaction with surfactant molecules at low molar ratios: the condensation of the polynucleotide, from an extended coil state to a globular state. The effect observed at the higher molar ratios is worth noting: the decondensation of DNA, that is, the transition from a compact state to a more extended conformation. Experimental data obtained confirm that this latter state is not exactly the same as that found in the absence of the surfactant. Attractive interactions between different parts of the molecule by ion correlation effects are the driving force to produce both the compaction and decompaction events. Results also show the importance of choosing both a proper system for the study and the most seeming measuring technique to use. The study demonstrates that, in some cases, the use of several techniques is desirable in obtaining reliable and accurate results.  相似文献   

14.
A highly efficient black TiO2-Ag photocatalytic nanocomposite, active under both UV and visible light illumination, was synthesized by decorating the surface of 25 nm TiO2 particles with Ag nanoparticles. The material was obtained via a rapid, one-pot, simple (surfactant and complexing agent free) chemical reduction method using silver nitrate and formaldehyde as a metal salt and reducing agent, respectively. The nanocomposite shows an increase of over 800% in the rate of photocatalytic methylene blue dye degradation, compared to commercial unmodified TiO2, under UV-VIS illumination. Unlike pure TiO2, the nanocomposite exhibits visible light activation, with a corresponding drop in optical reflectance from 100% to less than 10%. The photocatalytic properties were shown to be strongly enhanced by post-reduction annealing heat treatments in air, which were observed to decrease, rather than coarsen, silver particle size, and increase particle distribution. This, accompanied by a variation in the silver surface oxidation states, appear to dramatically affect the photocatalytic efficiency under both UV and visible light. This highly active photocatalyst could have wide ranging applications in water and air pollution remediation and solar fuel production.  相似文献   

15.
The compaction of DNA induced by two simple amphiphiles, cetyltrimethylammonium bromide [CTAB] and dodecyldimethylamine oxide [DDAO], has been investigated by means of combined viscosity and dynamic light scattering measurements, to demonstrate the formation of soluble DNA/surfactant complexes, undergoing a coil-globule transition, upon the increase of the amphiphile concentration. In both of the two systems investigated, the complexation process reaches a maximum for a value of the surfactant to DNA phosphate groups molar ratio of about X = 1. Below this critical concentration, the coil and the globule state coexist in the solution, as clearly shown by the bimodal size distribution obtained from the light scattering intensity correlation functions. Some suggestions are given to support a molecular mechanism responsible for the complex formation, both in the case of a cationic surfactant (CTAB) and of a pH-dependent neutral or cationic amphiphile (DDAO), where the hydrophobic interactions play an important role.  相似文献   

16.
We report evidence for photocontrolled stability and breakage of aqueous foams made from solutions of a cationic azobenzene-containing surfactant over a wide range of concentrations. Exposure to UV or visible lights results in shape and polarity switches in the surfactant molecule, which in turn affects several properties including critical micelle concentration, equilibrium surface tension, and the air-water interfacial composition (cis isomers are displaced by trans ones). We demonstrate that the trans isomer stabilizes foams, whereas the cis isomer forms unstable foams, a property that does not correlate with effects of light on surface tension, nor with total surfactant concentration. Achieving in situ breakage of foam is accordingly ascribed to the remote control of the dynamics of adsorption/desorption of the surfactant, accompanied by gradients of concentrations out of equilibrium. Photomodulation of adsorption kinetics and/or diffusion dynamics on interfaces is reached here by a noninvasive clean trigger, bringing a new tool for the study of foams.  相似文献   

17.
The underlying mechanism of UV light-induced dissociation and visible light-induced reformation of vesicles formed by an azobenzene diblock copolymer was investigated. These processes were studied in situ by monitoring changes in optical transmittance of the vesicular solution while being exposed to UV or visible light irradiation. The results indicate that the UV-induced dissociation of the vesicles results from their thermodynamic instability due to a shift of the hydrophilic/hydrophobic balance arising from the trans-cis isomerization, while their reaggregation takes place upon visible light irradiation that shifts the hydrophilic/hydrophobic balance in the opposite direction after the reverse cis-trans isomerization. The study suggests a specific design principle for obtaining UV light-dissociable and visible light-recoverable vesicles based on azobenzene block copolymers. On one hand, the structure of azobenzene moiety used in the hydrophobic block should have a small (near zero) dipole moment in the trans form and a significantly higher dipole moment in the cis form, which ensures a significant increase in polarity of the hydrophobic block under UV light irradiation. On the other hand, the hydrophilic block should be weakly hydrophilic. The conjunction of the two conditions can make the light-induced shift of the hydrophilic/hydrophobic balance important enough to lead to the reversible change in vesicular aggregation.  相似文献   

18.
Abstract— Holding of acriflavine sensitizedV–79 cells in growth medium before visible light exposure decreases inactivation by visible light. The decrease depended upon the period of holding, indicating that there was release of cellular dye during this period. Exposures to visible light were done in two conditions: (a) with no dye in the medium during visible light exposure (washed) and (b) with dye in the medium during exposure (unwashed). Caffeine was found to slightly increase the sensitivity of the cells to visible light in the washed condition, whereas, in the unwashed condition no such effect was observed. Interaction studies with far UV did not reveal any correlation between photodynamic damage and UV damage. Visible light exposure of acriflavine sensitized cells was found to be mutagenic, as studied from the induction of 8-azaguanine resistant mutants. Inhibition of singlet oxygen production by sodium azide suppressed the induction of mutants. All these, taken together, have been discussed with respect to the relative importance of DNA and non-DNA damage in the photodynamic action of acriflavine.  相似文献   

19.
The molecular mechanism and thermodynamics of the interactions between plasmid DNA and cationic surfactants were investigated by isothermal titration calorimetry (ITC), dynamic light scattering, surface tension measurements, and UV spectroscopy. The cationic surfactants studied include benzyldimethyldodecylammonium chloride, benzyldimethyltetradecylammonium chloride, cetylpyridinium chloride, and cetyltrimethylammonium chloride. The results indicate a critical aggregation concentration (cac) of a surfactant: above the cac the surfactant forms aggregates with plasmid DNA; below the cac, however, there is no detectable interaction between DNA and surfactant. Surfactants with longer hydrocarbon chains have smaller cac, indicating that hydrophobic interaction plays a key role in DNA-surfactant complexation. Moreover, an increase in ionic strength (I) increases the cac but decreases the critical micellization concentration (cmc). These opposite effects lead to a critical ionic strength (I(c)) at which cac = cmc; when I < I(c), cac < cmc; when I > I(c), DNA does not form complexes with surfactant micelles. In the interaction DNA exhibits a pseudophase property as the cac is a constant over a wide range of DNA concentrations. ITC data showed that the reaction is solely driven by entropy because both deltaH(o) (approximately 2-6 kJ mol(-1)) and deltaS(o) (approximately 70-110 J K(-1) mol(-1)) have positive values. In the complex, the molar ratio of DNA phosphate to surfactant is in the range of 0.63-1.05. The reaction forms sub-micrometer-sized primary particles; those aggregate at high surfactant concentrations. Taken together, the results led to an inference that there is no interaction between surfactant monomers and DNA molecules and demonstrated that DNA-cationic surfactant interactions are mediated by the hydrophobic interactions of surfactant molecules and counterion binding of DNA phosphates to the cationic surfactant aggregates.  相似文献   

20.
The interactions between DNA and a number of different cationic surfactants, differing in headgroup polarity, were investigated by electric conductivity measurements and fluorescence microscopy. It was observed that, the critical association concentration (cac), characterizing the onset of surfactant binding to DNA, does not vary significantly with the architecture of the headgroup. However, comparing with the critical micelle concentration (cmc) in the absence of DNA, it can be inferred that the micelles of a surfactant with a simple quaternary ammonium headgroup are much more stabilized by the presence of DNA than those of surfactants with hydroxylated head-groups. In line with previous studies of polymer-surfactant association, the cac does not vary significantly with either the DNA concentration or its chain length. On the other hand, a novel observation is that the cac is much lower when DNA is denaturated and in the single-stranded conformation, than for the double-helix DNA. This is contrary to expectation for a simple electrostatically driven association. Thus previous studies of polyelectrolyte-surfactant systems have shown that the cac decreases strongly with increasing linear charge density of the polyion. Since double-stranded DNA (dsDNA) has twice as large linear charge density as single-stranded DNA (ssDNA), the stronger binding in the latter case indicates an important role of nonelectrostatic effects. Both a higher flexibility of ssDNA and a higher hydrophobicity due to the exposed bases are found to play a role, with the hydrophobic interaction argued to be more important. The significance of hydrophobic DNA-surfactant interaction is in line with other observations. The significance of nonelectrostatic effects is also indicated in significant differences in cac between different surfactants for ssDNA but not for dsDNA. For lower concentrations of DNA, the conductivity measurements presented an "anomalous" feature, i.e., a second inflection point for surfactant concentrations below the cac; this feature was not displayed at higher concentrations of DNA. The effect is attributed to the presence of a mixture of ss- and dsDNA molecules. Thus the stability of dsDNA is dependent on a certain ion atmosphere; at lower ion concentrations the electrostatic repulsions between the DNA strands become too strong compared to the attractive interactions, and there is a dissociation into the individual strands. Fluorescence microscopy studies, performed at much lower DNA concentrations, demonstrated a transformation of dsDNA from an extended "coil" state to a compact "globule" condition, with a broad concentration region of coexistence of coils and globules. The onset of DNA compaction coincides roughly with the cac values obtained from conductivity measurements. This is in line with the observed independence of cac on the DNA concentration, together with the assumption that the onset of binding corresponds to an initiation of DNA compaction. No major changes in either the onset of compaction or complete compaction were observed as the surfactant headgroup was made more polar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号