首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single‐handed helical silica nanotubes containing chiral organic self‐assemblies were prepared by using a supramolecular templating approach. After carbonization and the removal of the silica, single‐handed helical carbonaceous nanotubes that contained twisted carbonaceous nanoribbons were obtained. It is believed that the nanotubes formed as a result of the adsorption of low‐molecular‐weight gelators. The twisted nanoribbons were formed because of the carbonization of the organic self‐assemblies. The samples were characterized by using field‐emission scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, Raman spectroscopy, and circular dichroism. For the samples carbonized at 900 °C for 3.0 h, a partially graphitized structure was identified. The circular dichroism (CD) spectra indicated that the twisted nanoribbons exhibited optical activity. The CD spectrum was simulated by using time‐dependent density functional theory. The results suggested that the CD signals originated from the chiral stacking of aromatic rings.  相似文献   

2.
Silica nanococoons with coiled or concentric circular pore channels in the walls attracted much attention, recently. However, the formation of them is not well illustrated. Herein, hollow silica shells with organized pore channels parallel to the shell surface were prepared through a single‐templating method using the self‐assemblies of a chiral low‐molecular‐weight amphiphile,L‐18Phe6PyBr, as templates under a dilute concentration. These nanococoons were characterized using X‐ray diffractometer and N2 sorption. The formation of them was clearly shown in the field‐emission electron microscopy images which were taken at a low voltage. Moreover, transmission electron microscopy images taken after different reaction times indicated a cooperative self‐assemble mechanism. It was also found that the nanocoons were formed from coiled nanoribbons.  相似文献   

3.
4.
To investigate the effects of metal–ligand coordination on the molecular structure, internal structure, dimensions, and morphology of self‐assembled nanostructures, two nonperipherally octa(alkoxyl)‐substituted phthalocyanine compounds with good crystallinity, namely, metal‐free 1,4,8,11,15,18,22,25‐octa(butyloxy)phthalocyanine H2Pc(α‐OC4H9)8 ( 1 ) and its lead complex Pb[Pc(α‐OC4H9)8] ( 2 ), were synthesized. Single‐crystal X‐ray diffraction analysis revealed the distorted molecular structure of metal‐free phthalocyanine with a saddle conformation. In the crystal of 2 , two monomeric molecules are linked by coordination of the Pb atom of one molecule with an aza‐nitrogen atom and its two neighboring oxygen atoms from the butyloxy substituents of another molecule, thereby forming a Pb‐connected pseudo‐double‐decker supramolecular structure with a domed conformation for the phthalocyanine ligand. The self‐assembling properties of 1 and 2 in the absence and presence of sodium ions were comparatively investigated by scanning electronic microscopy (SEM), spectroscopy, and X‐ray diffraction techniques. Intermolecular π–π interactions between metal‐free phthalocyanine molecules led to the formation of nanoribbons several micrometers in length and with an average width of approximately 100 nm, whereas the phthalocyaninato lead complex self‐assembles into nanostructures also with the ribbon morphology and micrometer length but with a different average width of approximately 150 nm depending on the π–π interactions between neighboring Pb‐connected pseudo‐double‐decker building blocks. This revealed the effect of the molecular structure (conformation) associated with metal–ligand (Pb? Nisoindole, Pb? Naza, and Pb? Obutyloxy) coordination on the dimensions of the nanostructures. In the presence of Na+, additional metal–ligand (Na? Naza and Na? Obutyloxy) coordination bonds formed between sodium atoms and aza‐nitrogen atoms and the neighboring butyloxy oxygen atoms of two metal‐free phthalocyanine molecules cooperate with the intrinsic intermolecular π–π interactions, thereby resulting in an Na‐connected pseudo‐double‐decker building block with a twisted structure for the phthalocyanine ligand, which self‐assembles into twisted nanoribbons with an average width of approximately 50 nm depending on the intertetrapyrrole π–π interaction. This is evidenced by the X‐ray diffraction analysis results for the resulting aggregates. Twisted nanoribbons with an average width of approximately 100 nm were also formed from the lead coordination compound 2 in the presence of Na+ with a Pb‐connected pseudo‐double‐decker as the building block due to the formation of metal–ligand (Na? Naza and Na? Obutyloxy) coordination bonds between additionally introduced sodium ions and two phthalocyanine ligands of neighboring pseudo‐double‐decker building blocks.  相似文献   

5.
L-苯丙氨酸衍生物(L-18Phe6PyBr)的自组装体为模板, 在0.30 mmol/L的浓度下, 研究了pH值、 老化时间和四乙氧基硅烷(TEOS)浓度对二氧化硅形貌的影响. 通过扫描电子显微镜和透射电子显微镜对样品进行表征. 结果表明, 在pH=10.01的条件下可以得到左手扭转的纳米带, 而pH=7.15和12.34时, 得到直线的纳米带. 遵循动态模板的方法, 老化时间的延长有利于直线纳米带的形成. 随着TEOS和L-18Phe6PyBr的质量比由2:1增加到15:1, 扭转纳米带的宽度增加, 螺距变长. 通过煅烧除去有机模板后, 得到带状二氧化硅纳米管. 将TEOS与L-18Phe6PyBr质量比为2:1制备得到的二氧化硅作为气相色谱固定相, 涂渍到毛细管色谱柱中进行对映体拆分. 结果表明, 该气相色谱柱可以拆分1-苯基-1-丙醇、 1-(4-氯苯基)乙醇和2-甲基戊酸3种外消旋化合物, 手性超分子印迹是拆分对映体的主要作用力. 对二氧化硅低聚物与小分子凝胶的协同组装行为以及将无机材料作为手性固定相有了一个更好的认识.  相似文献   

6.
Nanoribbons and nanowires of different metal phthalocyanines (copper, nickel, iron, cobalt, and zinc), as well as copper hexadecafluorophthalocyanine (F(16)CuPc), have been grown by organic vapor-phase deposition. Their properties, as a function of substrate type, source-to-substrate distance, and substrate temperature, were studied by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and absorption measurements. The size and morphology of the nanostructures were found to be mainly determined by the substrate temperature. The crystal structure was dependent on the substrate temperature as well. At substrate temperatures below 200 degrees C, in addition to straight nanoribbons, twisted nanoribbons were found for all investigated materials except F(16)CuPc, which formed helical nanoribbons upon exposure to an electron beam. The formation of different nanostructures (nanoribbons, twisted nanoribbons, and helical nanoribbons) is discussed.  相似文献   

7.
Left-handed, coiled, 4,4'-biphenylene bridged polybissilsesquioxane, tubular nanoribbons were prepared according to the published literature. After carbonization and removal of silica using HF aqueous solution, left-handed, coiled, carbonaceous, tubular nanoribbons were obtained. The left- handed, coiled, carbonaceous, tubular nanoribbons were characterized using field-emission scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, Raman spectropho- tometer, diffuse reflectance circular dichroism (DRCD), and N2 adsorptions. Micropores were formed due to the removal of silica. The nitrogen BET surface area is 1727 m2/g. A broad, positive DRCD signal, identified at 400-800 rim, indicates the carbonaceous, tubular nanoribbons exhibit optical activity. The helical pitch is proposed to play an important role in the position of the DRCD signal.  相似文献   

8.
This article describes the preparation of novolac‐type phenolic resin/silica hybrid organic–inorganic nanocomposite, with a sol–gel process. The coupling agent was used to improve the interface between the organic and inorganic phases. The effect of the structure of the nanocomposite on its physical and chemical properties is discussed. The coupling agent reacts with the resin to form covalent bonds. The structure of the modified hybrid nanocomposites was identified with a Fourier transform infrared spectroscope. The silica network was characterized by nuclear magnetic resonance imaging (29Si NMR). Results revealed that Q4 (tetrasubstituted) and T3 (trisubstituted) are the dominant microstructures. The size of the silica in the phenolic resin was characterized with a scanning electron microscope. The size of the particles of inorganic silica in the modified system was less than 100 nm. The nanocomposite exhibited good transparency. Moreover, the thermal and mechanical properties exhibited significant improvement. The modified hybrid composite exhibited favorable thermal properties. The temperature at which a weight loss of 5% occurred increased from 281 to 350 °C. The flexural strength increased by 6–30%. The limiting oxygen index of the nanocomposite reached 37, and the Underwriters Laboratory test was 94V‐0. Consequently, these materials possess excellent flame‐retardant properties. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 905–913, 2003  相似文献   

9.
In this paper, the variations in surface structure of polydimethylsiloxane elastomers before and after argon plasma treatments have been investigated by X‐ray photoelectron spectroscopy, slow positron beam, and scanning electron microscope. An inorganic silica‐like layer was probed by X‐ray photoelectron spectroscopy after 3 minutes or longer time of treatments, and the sample surface turned into totally hydrophilic. Short time (1 and 2 min) plasma exposure mainly removed preexisting low molecular weighted (LMW) siloxanes on sample surface. By using slow positron beam, the thicknesses of silica‐like layer for 3‐, 5‐, and 10‐minute–treated samples were estimated to be around 30, 66, and 91 nm, respectively. Beneath the silica‐like layer, a loose polymeric structure was also detected, which was ascribed to the accumulation of LMW siloxanes. Scanning electron microscope images showed that the silica‐like layer cracked after 10 minutes of plasma treatment, which provided direct diffusion pathways for LMW siloxanes. Hence, 10‐minute–treated sample showed rather low organic composition near surface. Slow positron beam provides valuable depth profile information for evaluating the surface aging condition of polydimethylsiloxane composite.  相似文献   

10.
The development of silica‐filling elastomers with high mechanical performance and good processability is still a great challenge. In this study, we fabricated siloxane‐grafted atactic 1,2‐polybutadiene (1,2‐PB) rubber through grafting poly(1,3‐butadiene)‐block‐(dimethylsiloxane) (PB‐b‐PDMS) onto 1,2‐PB molecular chains by coordination polymerization using a molybdenum (Mo)‐based catalyst system. The PB‐b‐PDMS with active double bonds was synthesized by anionic polymerization. Fourier transform infrared analysis (FTIR), elementary analysis, and GPC‐MALLS‐viscometer analyses verified the incorporation of PB‐b‐PDMS and the grafting structure in the resulting polymer. Scanning electron microscope (SEM), bound rubber testing, and dynamic mechanical analysis demonstrated that the graft‐modification with PB‐b‐PDMS improved silica dispersity in the 1,2‐PB matrix because the incorporation of siloxane groups provided stronger interfacial interaction with silica. Meanwhile, the graft‐modified 1,2‐PB exhibited lower Mooney viscosity, higher tensile strength, and lower heat build‐up than unmodified 1,2‐PB. This concept provides novel inspiration for the preparation of advanced rubber with promoted silica compatibility and mechanical performance.  相似文献   

11.
A chiral cationic thickener l-ValPyBr, which was able to enhance the viscosity of water and form loosely physical gel in mixtures of water and alcohols, was synthesized. Sol-gel polymerization of TEOS was carried out in mixtures of water and alcohols under basic conditions using the self-assemblies of l-ValPyBr as template. The left-handed twisted mesoporous silica nanoribbons, which were constructed by nanotubes in monolayer, were obtained, and they tended to self-assemble into bundle structure. Stirring under the preparation process played an important role in the formation of this bundle structure. The obtained silica nanoribbons were uniform in width, thickness, and helical pitch without combining amorphous particles. The helical pitch and pore size of the mesoporous silica nanoribbons sensitively depended on the volume ratio of alcohols to water in the reaction mixtures. With increasing volume ratio of alcohols to water in the reaction mixture, the morphologies of the obtained silica changed from left-handed twisted ribbon to coiled ribbon, then to tubular structure. A compound l-ValPyPF6, structurally related to thickener l-ValPyBr, was able to form physical gel in ethanol, THF, acetonitrile, and the mixtures of ethanol and water. Left-handed multiple helical mesoporous silica nanofibers were prepared by using the self-assemblies of l-ValPyPF6 as template in mixtures of water and alcohols under basic conditions. By controlling both the volume ratio of ethanol to water and the weight ratio of l-ValPyPF6 to TEOS, two- or three-dimensional pore-architecture constructed by porous chiral nanotubes was obtained.  相似文献   

12.
Carbon‐based nanomaterials have been widely studied in the past decade. Three approaches have been developed for the preparation of single‐handed helical carbonaceous nanotubes. The first approach uses the carbonization of organopolymeric nanotubes, where the organic polymers are polypyrrole, 3‐aminophenol‐formaldehyde resin, and m‐diaminobenzene‐formaldehyde resin. The second approach uses the carbonization of aromatic ring‐bridged polybissilsesquioxane followed by the removal of silica. Micropores exist within the walls of the carbonaceous nanotubes. The third approach uses the carbonization of organic compounds within silica nanotubes. This hard‐templating approach drives the formation of helical carbonaceous nanotubes containing twisted carbonaceous nanoribbons. All of these helical carbonaceous nanotubes exhibit optical activity, which is believed to originate from the chiral π‐π stacking of aromatic rings. They can be used as chirality inducers, and for lithium‐ion storage.  相似文献   

13.
Epoxy‐grafted silicone oligomer (ESO), which has a linear silicone chain in the backbone moiety, was synthesized from a trifunctional alkoxysilane via a sol–gel reaction. Characterization of ESO was performed with 1H and 29Si NMR, Fourier transform infrared, and gel permeation chromatography. The number‐average molecular weight of ESO was 3300. By adding the silicone oligomer as the inorganic source in the curing process of the epoxy resin, novel epoxy/silica hybrid materials were prepared. It was observed by transmission electron microscope that fine silica‐rich domains of about 5‐nm diameter were uniformly dispersed in the cured epoxy matrix. Thermomechanical properties of the hybrid materials were also investigated. The storage modulus in the rubbery region and the peak area of the tan δ curve at the glass‐transition region increased and decreased, respectively, with the hybridization of the silica network. The mobility of the epoxy network chains should be considerably suppressed by the hybridization with the silica network. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1631–1639, 2005  相似文献   

14.
We report a facile method that combined sol–gel reaction, reversible addition–fragmentation chain transfer (RAFT)/macromolecular design via interchange of the xanthates process and thiol‐ene click reaction to prepare monodisperse silica core‐poly(N‐vinylimidazole) (PVim) shell microspheres of 200 nm in average diameters. First, silica with C = C double bonds was prepared by the sol–gel reaction of 3‐(trimethoxysilyl)propyl methacrylates (MPS) with tetraethoxysilane in ethanol; SiO2@PVim were subsequently prepared by grafting PVim chain (Mn = 9800 g/mol, polydispersity index = 1.22) to MPS‐SiO2 via the thiol‐ene click chemisty. The obtained SiO2@PVim microspheres show higher catalytic activity toward the hydrolysis of p‐nitrophenyl acetate compared with the PVim homopolymers. The as‐prepared composites have been characterized by scanning electron microscopy, transmission electron microscopy, thermal gravimetric analysis and Fourier transform infrared spectrometry analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
One-dimensional organic nanoribbons built on N-p-nitrophenylsalicylaldimine zinc complex were synthesized via a facile solvothermal route. The scanning electron microscope images revealed that the as-synthesized products were ribbon-like with width mainly of 300-600 nm, thickness of about 50 nm, and length of up to tens of micrometers. Fourier transform infrared spectrum was employed to characterize the structure. Ultraviolet-visible absorption and photoluminescence spectra showed that the products had good photoluminescent property and exhibited blue emission. The conductivity of a bundle of nanoribbons was also measured, which showed that the Schiff base zinc nanoribbons had good photoconductive property. This work might enrich the organic photoconductive materials and be applicable in light-controlled micro-devices or nano-devices in the future.  相似文献   

16.
A novel core–shell magnetic surface molecularly imprinted polymer with folic acid as a template was successfully synthesized by the sol–gel method. To generate Lewis acid sites in the silica matrix for the interaction of the metal coordinate with the template, 3‐aminopropyltriethoxysilane was used as a functional monomer, tetraethyl orthosilicate as a cross‐linker, and aluminum ions as a dopant. The magnetite encapsulated by the silica shell plays an important role as a magnetic‐coated polymer. The synthesized product was characterized by powder X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, and FTIR and UV/Vis spectroscopy. The powder X‐ray diffraction patterns, FTIR and UV/Vis spectra confirmed the characteristics of the as‐prepared silica coated magnetite and folic acid molecularly imprinted polymer. It was successfully applied for magnetic solid‐phase extraction prior to the determination of folates in tomato samples using high‐performance liquid chromatography with photodiode array detection. The detection limit of the proposed method was 1.67 μg/L, and results were satisfactory, with a relative standard deviation of < 3.94%.  相似文献   

17.
Peptides, the fundamental building units of biological systems, are chiral in molecular scale as well as in spatial conformation. Shells are exquisite examples of well‐defined chiral structures produced by natural biomineralization. However, the fundamental mechanism of chirality expressed in biological organisms remains unclear. Here, we present a system that mimics natural biomineralization and produces enantiopure chiral inorganic materials with controllable helicity. By tuning the hydrophilicity of the amphiphilic peptides, the chiral morphologies and mesostructures can be changed. With decreasing hydrophilicity of the amphiphilic peptides, we observed that the nanostructures changed from twisted nanofibers with a hexagonal mesostructure to twisted nanoribbons with a lamellar mesostructure, and the extent of the helicity decreased. Defining the mechanism of chiral inorganic materials formed from peptides by noncovalent interactions can improve strategies toward the bottom‐up synthesis of nanomaterials as well as in the field of bioengineering.  相似文献   

18.
Streptomycin‐imprinted silica microspheres were prepared by combining a surface molecular‐imprinting technique with the sol‐gel method. A mixture of tetrahydrofuran, ethanol, and water (6:1:1, v/v/v) was selected as dispersing solvent while 3‐aminopropyltriethoxysilane and triethoxyphenylsilane acted as functional monomers, and tetraethyl orthosilicate as a cross‐linker. Characterization of the molecularly imprinted polymers was conducted using scanning electron microscope and dynamic binding experiments. As compared to the nonimprinted polymers, the imprinted polymers exhibited a higher degree of saturated adsorption volume up to 26.3 mg/g, and better selectivity even in an aqueous solution with interfering compounds, including dihydrostreptomycin, neomycin, and tetracycline. The adsorption ability and selectivity were observed to be influenced by the mole ratio of 3‐aminopropyltriethoxysilane and triethoxyphenylsilane. Feasibility of the polymers to be used for actual application was also evaluated with spiked samples, indicating great potential for large‐scale applications. Moreover, the streptomycin‐imprinted polymers can be repeatedly used for 12 cycles without losing original performance, which is beneficial for commercial use.  相似文献   

19.
CdS nanoparticles were formed on the surface of silica microspheres by the improved layer‐by‐layer self‐assembled technique. High‐resolution electron microscope (HRTEM) image and energy dispersive x‐ray analysis (EDX) confirmed formation of a quasi‐continuous CdS nanoparticles film on the silica microspheres. The results of UV‐vis and fluorescence spectra display that the spherical silica surface has a great effect on the photoluminescence of the loaded CdS nanoparticles. In contrast to the CdS nanoparticles powder, the composite can exhibit the emission ascribed to the band gap transition when the CdS nanoparticles film is relatively thick. This phenomenon is probably due to an enhancement of the crystallinity of CdS nanoparticles induced by the silica spheres.  相似文献   

20.
Polyimide (PI)/silica hybrid films were prepared from tetraethyl orthosilicate (TEOS) using a sol‐gel process as well as pyromellitic dianhydride and 4,4‐oxydianiline. 1,4‐Cyclohexanedicarboxylic acid (1,4‐CHDA) was added as a coupling agent. The PI/silica hybrid films were characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, differential scanning calorimetry and wide‐angle X‐ray diffraction. The thermal, tensile and dielectric properties of the hybrid films were measured. The results showed that the tensile and dielectric properties of the hybrid films improved with increasing silica concentration and 1,4‐CHDA content in the PI matrix. Covalent ester bonds were formed between SiOH groups of silica and carboxyl groups of 1,4‐CHDA. As a result, the silica particle size was reduced and dispersed homogeneously in the PI matrix, leading to increased tensile strength and tensile modulus of the typical hybrid film with 1,4‐CHDA (PI‐2), when compared with the PI/silica hybrid film without 1,4‐CHDA at the same silica contents. The presence of an alicyclic moiety containing silica in PI reduced the dielectric constant considerably to 2.83, which was lower than that of pristine PI. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号