首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a combined photoelectron and vibrational spectroscopy study of the (H(2)O)(7)(-) cluster anions in order to correlate structural changes with the observed differences in electron binding energies of the various isomers. Photoelectron spectra of the (H(2)O)(7)(-) . Ar(m) clusters are obtained over the range of m=0-10. These spectra reveal the formation of a new isomer (I') for m>5, the electron binding energy of which is about 0.15 eV higher than that of the type I form previously reported to be the highest binding energy species [Coe et al., J. Chem. Phys. 92, 3980 (1990)]. Isomer-selective vibrational predissociation spectra are obtained using both the Ar dependence of the isomer distribution and photochemical depopulation of the more weakly (electron) binding isomers. The likely structures of the isomers at play are identified with the aid of electronic structure calculations, and the electron binding energies, as well as harmonic vibrational spectra, are calculated for 28 low-lying forms for comparison with the experimental results. The HOH bending spectrum of the low binding type II form is dominated by a band that is moderately redshifted relative to the bending origin of the bare water molecule. Calculations trace this feature primarily to the bending vibration localized on a water molecule in which a dangling H atom points toward the electron cloud. Both higher binding forms (I and I') display the characteristic patterns in the bending and OH stretching regions signaling electron attachment primarily to a water molecule in an AA binding site, a persistent motif found in non-isomer-selective spectra of the clusters up to (H(2)O)(50)(-).  相似文献   

2.
We present the first results from an experiment designed to explore barriers for interconversion between isomers of cluster anions using an Ar-cluster mediated pump-probe technique. In this approach, anions are generated with many Ar atoms attached, and one of the isomers present is selectively excited by tuning an infrared laser to one of the isomer's characteristic vibrational resonances. The excited cluster is then cooled by evaporation of Ar atoms, and the isomer distribution in the lighter daughter ions is measured after secondary mass selection by recording their photoelectron spectra using velocity-map imaging. We apply the method to the water hexamer anion, (H(2)O)(6) (-), which is known to occur in two isomeric forms with different electron-binding energies. We find that conversion of the high-binding (type I) form to the low-binding (type II) isomer is not efficiently driven in (H(2)O)(6) (-) with excitation energies in the 0.4 eV range even though it is possible to create both isomers in abundance in the ion source. This observation is discussed in the context of the competition between isomerization and electron autodetachment, which depends on the relative positions of the neutral and ionic potential surfaces along the isomerization pathway. Application of the method to the more complex heptamer ion, however, does reveal that interconversion is available among the highest binding isomer classes (I and I(')).  相似文献   

3.
Photoelectron spectroscopy is combined with ab initio calculations to study the microsolvation of the dicyanamide anion, N(CN)(2)(-). Photoelectron spectra of [N(CN)(2)(-)](H2O)n (n = 0-12) have been measured at room temperature and also at low temperature for n = 0-4. Vibrationally resolved photoelectron spectra are obtained for N(CN)(2)(-), allowing the electron affinity of the N(CN)2 radical to be determined accurately as 4.135 +/- 0.010 eV. The electron binding energies and the spectral width of the hydrated clusters are observed to increase with the number of water molecules. The first five waters are observed to provide significant stabilization to the solute, whereas the stabilization becomes weaker for n > 5. The spectral width, which carries information about the solvent reorganization upon electron detachment in [N(CN)(2)(-)](H2O)n, levels off for n > 6. Theoretical calculations reveal several close-lying isomers for n = 1 and 2 due to the fact that the N(CN)(2)(-) anion possesses three almost equivalent hydration sites. In all the hydrated clusters, the most stable structures consist of a water cluster solvating one end of the N(CN)(2)(-) anion.  相似文献   

4.
We report vibrational predissociation spectra of water cluster anions, (H(2)O)(n=)()(3)(-)(24)(-) in the HOH bending region to explore whether the characteristic red-shifted feature associated with electron binding onto a double H-bond acceptor (AA) water molecule survives into the intermediate cluster size regime. The spectra of the "tagged" (H(2)O)(n)()(-).Ar clusters indeed exhibit the signature AA band, but assignment of this motif to a particular isomer is complicated by the fact that argon attachment produces significant population of three isomeric forms (as evidenced by their photoelectron spectra). We therefore also investigated the bare clusters since they can be prepared exclusively in the high binding (isomer class I) form. Because the energy required to dissociate a water molecule from the bare complexes is much larger than the transition energies in the bending region, the resulting (linear) action spectroscopy selectively explores the properties of clusters with most internal energy content. The (H(2)O)(15)(-) predissociation spectrum obtained under these conditions displays a more intense AA feature than was found in the spectra of the Ar tagged species. This observation implies that not only is the AA motif present in the class I isomer, but also that it persists when the clusters contain considerable internal energy.  相似文献   

5.
The reaction in water of M(II) ions (M = Cu, 1; Zn, 2; VO, 3) with 2,2'-bipyridine (bipy) followed by Na4P2O7 leads to the formation of three new complexes which feature the pyrophosphate anion, P2O7(4-), as a bridging ligand. Single crystal X-ray diffraction revealed 1 to be {[(bipy)Cu(H2O)(micro-P2O7)Na2(H2O)6] x 4H2O}, and 2 as a tetranuclear Zn(II) complex, {[(bipy)Zn(H2O)(micro-P2O7)Zn(bipy)]2 x 14H2O}. The structure of 1 consists of a mononuclear [(bipy)Cu(H2O)(P2O7)]2- unit that links via a pyrophosphate bridge to two Na atoms. The hydrated six-coordinate Na atoms themselves join together through bridging water molecules to generate a 2D Na-water sheet. The structure of 2 consists of a tetranuclear Zn(II) cluster (dimer-of-dimers) with two pyrophosphate ligands bridging between four metal centres. Adjacent clusters interact through face-to-face pi-pi interactions via the bipy ligands to yield a 2D sheet. Adjacent sheets pack in register to create channels, which are filled by the water molecules of crystallisation. An intricate 2D H-bonded water network separates adjacent sheets and encapsulates the tetranuclear clusters. Aspects of the pyrophosphate coordination modes in 1 and 2 are of structural relevance to those found within the inorganic pyrophosphatases. Compound 3, {[(bipy)(VO)2]2(micro-P2O7)] x 5H2O}, was isolated as an insoluble lime-green powder. Its dinuclear structure was elucidated from elemental and thermal analysis, magnetic susceptibility measurement and IR spectroscopy. The latter displayed characteristic bridging pyrophosphate and signature V=O stretches, which were corroborated by contrast to the IR spectra of 1 and 2 and through comparison with those found in the structurally characterised dinuclear complex, {[(bipy)Cu(H2O)]2(micro-P2O7) x 7H2O}, 4.  相似文献   

6.
The electron binding energies and relaxation dynamics of water cluster anions (H(2)O)(n)(-) (11 ≤ n ≤ 80) formed in co-expansions with neon were investigated using one-photon and time-resolved photoelectron imaging. Unlike previous experiments with argon, water cluster anions exhibit only one isomer class, the tightly bound isomer I with approximately the same binding energy as clusters formed in argon. This result, along with a decrease in the internal conversion lifetime of excited (H(2)O)(n)(-) (25 ≤ n ≤ 40), indicates that clusters are vibrationally warmer when formed in neon. Over the ranges studied, the vertical detachment energies and lifetimes appear to converge to previously reported values.  相似文献   

7.
Electronic relaxation dynamics of water cluster anions   总被引:1,自引:0,他引:1  
The electronic relaxation dynamics of water cluster anions, (H(2)O)(n)(-), have been studied with time-resolved photoelectron imaging. In this investigation, the excess electron was excited through the p<--s transition with an ultrafast laser pulse, with subsequent electronic evolution monitored by photodetachment. All excited-state lifetimes exhibit a significant isotope effect (tau(D)2(O)/tau(H)2(O) approximately 2). Additionally, marked dynamical differences are found for two classes of water cluster anions, isomers I and II, previously assigned as clusters with internally solvated and surface-bound electrons, respectively. Isomer I clusters with n > or = 25 decay exclusively by internal conversion, with relaxation times that extrapolate linearly with 1/n toward an internal conversion lifetime of 50 fs in bulk water. Smaller isomer I clusters (13 < or = n < or = 25) decay through a combination of excited-state autodetachment and internal conversion. The relaxation of isomer II clusters shows no significant size dependence over the range of n = 60-100, with autodetachment an important decay channel following excitation of these clusters. Photoelectron angular distributions (PADs) were measured for isomer I and isomer II clusters. The large differences in dynamical trends, relaxation mechanisms, and PADs between large isomer I and isomer II clusters are consistent with their assignment to very different electron binding motifs.  相似文献   

8.
IR-UV double resonance spectroscopy and ab initio calculations were employed to investigate the structures and vibrations of the aromatic amino acid, L-phenylalanine-(H(2)O)(n) clusters formed in a supersonic free jet. Our results indicate that up to three water molecules are preferentially bound to both the carbonyl oxygen and the carboxyl hydrogen of L-phenylalanine (L-Phe) in a bridged hydrogen-bonded conformation. As the number of water molecules is increased, the bridge becomes longer. Two isomers are found for L-Phe-(H(2)O)(1), and both of them form a cyclic hydrogen-bond between the carboxyl group and the water molecule. In L-Phe-(H(2)O)(2), only one isomer was identified, in which two water molecules form extended cyclic hydrogen bonds with the carboxyl group. In the calculated structure of L-Phe-(H(2)O)(3) the bridge of water molecules becomes larger and exhibits an extended hydrogen-bond to the pi-system. Finally, in isolated L-Phe, the D conformer was found to be the most stable conformer by the experiment and by the ab initio calculation.  相似文献   

9.
The vibrational predissociation spectra of the two more strongly electron binding forms of the (H2O)8- anion are obtained in the HOH intramolecular bending region. This is accomplished by deconvoluting the overlapping spectra obtained from a mixed ensemble using a population modulation scheme in which the low electron binding isomer (II) is removed from the ion packet prior to spectroscopic analysis. By choosing the energy of the photodepletion laser to lie between the vertical detachment energies of the two isomers, the contribution from isomer II can be quantitatively eliminated, leaving the population of I largely unaffected. The low binding energies involved in the application of the method to the water cluster anions necessitate that this should be carried out in the midinfrared, thus requiring two tunable ir laser systems for implementation. The isolated spectrum of isomer 1 displays a strong, redshifted feature associated with a double H-bond acceptor (AA) water molecule in direct contact with the excess electron and a large gap before higher energy features appear that are typically associated with (acceptor/donor) AD and ADD binding sites in the network. The more weakly binding isomer II does not display the AA feature and instead contributes broad structure at intermediate redshifts that merges with the region associated with neutral water cluster networks.  相似文献   

10.
Upon excitation of Cl(-)(H(2)O)(3) and I(-)(H(2)O)(3) clusters, the electron transfers from the anionic precursor to the solvent, and then the excess electron is stabilized by polar solvent molecules. This process has been investigated using ab initio molecular dynamics (AIMD) simulations of excited states of Cl(-)(H(2)O)(3) and I(-)(H(2)O)(3) clusters. The AIMD simulation results of Cl(-)(H(2)O)(3) and I(-)(H(2)O)(3) are compared, and they are found to be similar. Because the role of the halogen atom in the photoexcitation mechanism is controversial, we also carried out AIMD simulations for the ground-state bare excess electron -- water trimer [e(-)(H(2)O)(3)] at 300 K, the results of which are similar to those for the excited state of X(-)(H(2)O)(3) with zero kinetic energy at the initial excitation. This indicates that the rearrangement of the complex is closely related to that of e(-)(H(2)O)(3), whereas the role of the halide anion is not as important.  相似文献   

11.
Photoelectron spectra of Al(5)O(m)(-) (m=3-5) and of the anion produced by the dissociative adsorption of a water molecule by Al(5)O(4)(-) are interpreted with density-functional geometry optimizations and electron-propagator calculations of vertical electron detachment energies. For Al(5)O(3)(-), Al(5)O(4)(-), and Al(5)O(5)H(2)(-), the observed signals may be attributed to the most stable isomer of each anion. For Al(5)O(5)(-), the features in the photoelectron spectrum are due to three almost isoenergetic isomers.  相似文献   

12.
We report estimates of complete basis set (CBS) limits at the second-order M?ller-Plesset perturbation level of theory (MP2) for the binding energies of the lowest-lying isomers within each of the four major families of minima of (H(2)O)(20). These were obtained by performing MP2 calculations with the family of correlation-consistent basis sets up to quadruple zeta quality, augmented with additional diffuse functions (aug-cc-pVnZ, n=D, T, Q). The MP2/CPS estimates are -200.1 (dodecahedron, 30 hydrogen bonds), -212.6 (fused cubes, 36 hydrogen bonds), -215.0 (face-sharing pentagonal prisms, 35 hydrogen bonds), and -217.9 kcal/mol (edge-sharing pentagonal prisms, 34 hydrogen bonds). The energetic ordering of the various (H(2)O)(20) isomers does not follow monotonically the number of hydrogen bonds as in the case of smaller clusters such as the different isomers of the water hexamer. The dodecahedron lies ca. 18 kcal/mol higher in energy than the most stable edge-sharing pentagonal prism isomer. The TIP4P, ASP-W4, TTM2-R, AMOEBA, and TTM2-F empirical potentials also predict the energetic stabilization of the edge-sharing pentagonal prisms with respect to the dodecahedron, albeit they universally underestimate the cluster binding energies with respect to the MP2/CBS result. Among them, the TTM2-F potential was found to predict the absolute cluster binding energies to within <1% from the corresponding MP2/CBS values, whereas the error for the rest of the potentials considered in this study ranges from 3% to 5%.  相似文献   

13.
The preparation of the alpha-1 and alpha-2 isomers of the Wells-Dawson 17 tungsto derivatives by standard methods is accompanied by a significant proportion of the other isomer present as an impurity. In this study, the alpha-1 and alpha-2 isomers of [Zn(H(2)O)P(2)W(17)O(61)](8)(-) have been prepared in >98% purity by reacting isomerically pure K(9)Li[alpha-1-P(2)W(17)O(61)] and K(10)[alpha-2-P(2)W(17)O(61)], respectively, with ZnCl(2), while rigorously controlling the pH at 4.7. The molecules were isolated as potassium salts. For (183)W NMR and (31)P NMR characterization, both molecules were ion exchanged by cation-exchange chromatography, maintaining the pH at 4.7, to obtain the lithium salts. Removal of water and isolation of a solid sample of [alpha-1-Zn(H(2)O)P(2)W(17)O(61)](8)(-) was achieved by lyophilization at -40 degrees C. The chemical shift data from (31)P and (183)W NMR spectroscopy of the isolated [alpha-1-Zn(H(2)O)P(2)W(17)O(61)](8)(-) and [alpha-2-Zn(H(2)O)P(2)W(17)O(61)](8)(-) isomers are consistent with a mixture of the alpha-1 and alpha-2 isomers reported previously;(1) the molecules have the expected C(1) and C(s)() symmetry, respectively. The [alpha-1-Zn(H(2)O)P(2)W(17)O(61)](8)(-) isomer is stable in the pH range of 4.6-6 at temperatures <35 degrees C. Using the same ion exchange and lyophilization techniques, the lacunary [alpha-1-P(2)W(17)O(61)](10)(-) isomer was isolated as the lithium salt; characterization by (183)W NMR spectroscopy confirms the C(1) symmetry.  相似文献   

14.
(H2O)(6) (-) appears as a "magic" number water cluster in (H2O)(n) (-) mass spectra. The structure of the (H2O)(6) (-) isomer dominating the experimental population has been established only recently [N. I. Hammer et al., J. Phys. Chem. A 109, 7896 (2005)], and the most noteworthy characteristic of this isomer is the localization of the excess electron in the vicinity of a double-acceptor monomer. In the present work, we use a quantum Drude model to characterize the low-energy isomers and the finite temperature properties of (H2O)(6) (-). Comparison with ab initio calculations shows that the use of a water model employing distributed polarizabilities and distributed repulsive sites is necessary to correctly reproduce the energy ordering of the low-lying isomers. Both the simulations and the ab initio calculations predict that there are several isomers of (H2O)(6) (-) significantly lower in energy than the experimentally observed species, suggesting that the experimental distribution is far from equilibrium.  相似文献   

15.
We have searched for new species of small oxygen-containing gas-phase dianions produced in a secondary ion mass spectrometer by Cs+ ion bombardment of solid samples with simultaneous exposure of their surfaces to O2 gas. The targets were a pure zinc metal foil, a copper-contaminated zinc-based coin, two silicon-germanium samples (Si(1-x)Ge(x)(with x= 6.5% or 27%)) and a piece of titanium metal. The novel dianions Zn3O(4)(2-), Zn4O(5)(2-), CuZn2O(4)(2-), Si2GeO(6)(2-), Ti2O(5)(2-) and Ti3O(7)(2-) have been observed at half-integer m/z values in the negative ion mass spectra. The heptamer dianions Zn3O(4)(2-) and Ti2O(5)(2-) have been unambiguously identified by their isotopic abundances. Their flight times through the mass spectrometer are approximately 20 micros and approximately 17 micros, respectively. The geometrical structures of the two heptamer dianions Ti2O(5)(2-), and Zn3O(4)(2-) are investigated using ab initio methods, and the identified isomers are compared to those of the novel Ge2O(5)(2-) and the known Si2O(5)(2-) and Be3O(4)(2-) dianions.  相似文献   

16.
Infrared spectroscopy of gas-phase hydrated clusters provides us much information on structures and dynamics of water networks. However, interpretation of spectra is often difficult because of high internal energy (vibrational temperature) of clusters and coexistence of many isomers. Here we report an approach to vary these factors by using the inert gas (so-called "messenger")-mediated cooling technique. Protonated water clusters with a messenger (M), H(+)(H(2)O)(4-8)·M (M = Ne, Ar, (H(2))(2)), are formed in a molecular beam and probed with infrared photodissociation spectroscopy in the OH stretch region. Observed spectra are compared with each other and with bare H(+)(H(2)O)(n). They show clear messenger dependence in their bandwidths and relative band intensities, reflecting different internal energy and isomer distribution, respectively. It is shown that the internal energy follows the order H(+)(H(2)O)(n) > H(+)(H(2)O)(n)·(H(2))(2) > H(+)(H(2)O)(n)·Ar > H(+)(H(2)O)(n)·Ne, while the isomer-selectivity, which changes the isomer distribution in the bare system, follows the order H(+)(H(2)O)(n)·Ar > H(+)(H(2)O)(n)·(H(2))(2) > H(+)(H(2)O)(n)·Ne ~ (H(+)(H(2)O)(n)). Although the origin of the isomer-selectivity is unclear, comparison among spectra measured with different messengers is very powerful in spectral analyses and makes it possible to easily assign spectral features of each isomer.  相似文献   

17.
Infrared predissociation (IRPD) spectra of Li(+)(C(6)H(6))(1-4)(H(2)O)(1-2)Ar(0-1) and Na(+)(C(6)H(6))(2-4)(H(2)O)(1-2)Ar(1) are presented along with ab initio calculations. The results indicate that the global minimum energy structure for Li(+)(C(6)H(6))(2)(H(2)O)(2) has each water forming a π-hydrogen bond with the same benzene molecule. This bonding motif is preserved in Li(+)(C(6)H(6))(3-4)(H(2)O)(2)Ar(0-1) with the additional benzene ligands binding to the available free OH groups. Argon tagging allows high-energy Li(+)(C(6)H(6))(2-4)(H(2)O)(2)Ar isomers containing water-water hydrogen bonds to be trapped and detected. The monohydrated, Li(+) containing clusters contain benzene-water interactions with varying strength as indicated by shifts in OH stretching frequencies. The IRPD spectra of M(+)(C(6)H(6))(1-4)(H(2)O)(1-2)Ar are very different for lithium-bearing versus sodium-bearing cluster ions emphasizing the important role of ion size in determining the most favorable balance of competing noncovalent interactions.  相似文献   

18.
The activation of dioxygen is a key step in CO oxidation catalyzed by gold nanoparticles. It is known that small gold cluster anions with even-numbered atoms can molecularly chemisorb O(2) via one-electron transfer from Au(n)(-) to O(2), whereas clusters with odd-numbered atoms are inert toward O(2). Here we report spectroscopic evidence of two modes of O(2) activation by the small even-sized Au(n)(-) clusters: superoxo and peroxo chemisorption. Photoelectron spectroscopy of O(2)Au(8)(-) revealed two distinct isomers, which can be converted from one to the other depending on the reaction time. Ab initio calculations show that there are two close-lying molecular O(2)-chemisorbed isomers for O(2)Au(8)(-): the lower energy isomer involves a peroxo-type binding of O(2) onto Au(8)(-), while the superoxo chemisorption is a slightly higher energy isomer. The computed detachment transitions of the superoxo and peroxo species are in good agreement with the experimental observation. The current work shows that there is a superoxo to peroxo chemisorption transition of O(2) on gold clusters at Au(8)(-): O(2)Au(n)(-) (n = 2, 4, 6) involves superoxo binding and n = 10, 12, 14, 18 involves peroxo binding, whereas the superoxo binding re-emerges at n = 20 due to the high symmetry tetrahedral structure of Au(20), which has a very low electron affinity. Hence, the two-dimensional (2D) Au(8)(-) is the smallest anionic gold nanoparticle that prefers peroxo binding with O(2). At Au(12)(-), although both 2D and 3D isomers coexist in the cluster beam, the 3D isomer prefers the peroxo binding with O(2).  相似文献   

19.
We employed a four-step searching/screening approach to determine best candidates for the global minima of (H2O)11 and (H2O)13. This approach can be useful when there exist a large number of low-lying and near-isoenergetic isomers, many of which have the same oxygen-skeleton structure. On the two new candidates for the global minimum of (H2O)11, one isomer can be viewed as placing the 11th molecule onto the side of the global minimum of (H2O)10 and the other can be viewed as removing the 12th molecule from the middle layer of the global minimum of (H2O)12. The three leading lowest-energy clusters of (H2O)13 can all be built starting from the global minimum of (H2O)12, with the difference being in the location of the 13th water molecule.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号