首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Fabrication of polyhedral CdS flower-like architectures have been achieved on a large scale through a mixed solvothermal method. The obtained CdS are characterized by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy, and the results indicate that the CdS flower-like architectures with diameters of 1.5–2.0 µm are hexagonal wurtzite phase and are assembled by some pyramids with the bottom side length of about 440 nm, which have some crystallographic faces. A series of relevant experiments through altering experimental parameters, indicate that the temperature, starting materials and solvent play key roles for the shape evolution of CdS flower-like architectures. The studies of optical properties for polyhedral CdS flower-like architectures indicate that the UV-vis spectroscopy shows a blue-shift absorption peak at 500 nm compared to that of bulk CdS, the photoluminescence spectroscopy shows an emission peak at 640 nm and another strong emission peak at 695 nm, which are believed to be attributed to excitonic emission and deep levels.   相似文献   

2.
以巯基乙酸为稳定剂,通过控制反应温度、反应时间及pH值,在水相中合成了稳定的受激发出紫光、蓝光、绿光、黄光和红光的CdS量子点;通过紫外可见吸收光谱、荧光光谱和X射线衍射谱(XRD)对产物的光学性能和晶体结构进行了表征,结果表明所合成的CdS量子点分散性较好,量子产率为8%,为立方晶型,粒径约1 nm;利用荧光倒置显微镜观察了量子点在洋葱内表皮细胞膜上聚集及受激发射荧光行为,实现细胞膜初步标记.  相似文献   

3.
Colloidal CdS nanorods with diameters near 4 nm and narrow size distributions ( approximately +/-10%) were synthesized up to 300 nm long by a sequential reactant injection technique that utilizes phosophonic acids as capping ligands. The phosphonic acid strongly passivates the nonpolar CdS surfaces and sequential reactant injection provides controlled CdS formation kinetics to enable heterogeneous and facet-selective CdS deposition on the more reactive {002} surfaces. With this process, the nanorod length can be systematically increased by increasing reactant addition to extend nanorod growth. The phosphonic acid concentration, however, is quite important, as "low" concentrations allow radial deposition and branching to occur. These high aspect ratio (>100) CdS nanorods luminesce with relatively high efficiencies of 10.8% quantum yield at room temperature. The luminescence, however, mostly arises from trap-related recombination, and the emission is significantly red-shifted from the absorption edge. Various surface passivation treatments were explored to eliminate trap emission and increase the luminescence quantum yield. Thiol and amine passivation both significantly reduced trap emission and enhanced band-edge emission, but the total luminescence quantum yields dropped significantly, with a maximum measured value of 1.5% for the amine-passivated CdS nanorods.  相似文献   

4.
Self-assembled CdS architectures with flower-like structures have been synthesized by a mixed solvothermal method using ethylene glycol and oleic acid as the mixed solvent at 160°C for 12 h. The results of X-ray diffraction (XRD) patterns, field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images indicate that the product exists as the hexagonal wurtzite phase and conatins of larger numbers of flower-like CdS architectures with diameters of 1.8–3 μm. The selected-area electron diffraction (SAED) pattern and the high resolution transmission electron microscope (HRTEM) image reveal that the grain has better crystallinity. The optical properties of flower-like CdS architectures were also investigated by ultraviolet-visable (UV-vis) and photoluminescence spectroscopy at room temperature. A strong peak at 490 nm is shown in the UV-vis absorption, while an emission at 486 nm and another strong emission at 712 nm are shown in the PL spectrum.   相似文献   

5.
本文报道了配合物[Cd(SS)(NN)](SS=mnt2-,1,2-二氰基乙烯-1,2-二硫醇离子.NN=phen-5,6-dione,1,10-菲咯啉-5,6-二酮)的合成.探讨了Cd(SS)(NN)的电子吸收光谱和发射光谱。研究了掺杂有配合物Cd(SS)(NN)的CdS复合膜的光-电转换特性。  相似文献   

6.
XRD and TEM characterisation evidenced the formation of well-dispersed CdS nanoparticles inside a phosphate glass matrix. Optical absorption and time-resolved photoluminescence study were carried out on the prepared glass samples. Optical absorption revealed the fast character of the growth of CdS nanoparticles in this medium. Photoluminescence spectra showed only one large band with a maximum at almost 740 nm, which was associated to transitions between energy levels within the bandgap of the CdS nanoparticles. From the steady state and time-resolved measurements, it was suggested that the emission comes mainly from sulfur vacancies inside the nanocrystals and on its surface, which act as deep traps for the photogenerated electrons. The creation of such vacancies was attributed to the loss of sulfur during the glass preparation as evidenced from a chemical analysis using energy dispersive X-ray spectrometry. These traps may be also induced by the fast growth of CdS nanocrystals in this matrix or laser exposure during PL measurements. These CdS-doped glasses with an intense absorption in the UV–Vis region and a large emission band with long lifetime and a large Stokes-shift are adequate for luminescent solar concentrators, photocatalytic applications and solid-state lasers.  相似文献   

7.
The synthesis and characterization of cadmium sulphide (CdS) quantum dots, conjugated in a porous phosphate heterostructure functionalized with aminopropyl groups is described. The resulting material has fluorescence properties with maximum emission intensity at 575 nm. The fluorescent materials are not soluble in water and exhibit high stability in aqueous solution in the pH ranges from 2 to 9. Energy dispersive X-ray spectroscopy confirmed the qualitative elemental composition of the synthesized materials and X-ray photoelectron spectra showed a surface S/Cd atomic ratio of 1.09. SEM images show that the materials are amorphous, possessing porous with sizes of several tens nanometres, homogeneous and exhibit a layered morphology. The adsorption–desorption analysis by N2 at 77 K showed the accessibility of the CdS quantum dots onto the pores of the structure. The CdS quantum dots were stabilized by mercaptopropionic acid and bounded to the host materials by amine groups.  相似文献   

8.
Cadmium sulfide nanoparticles with average size of ≈16 nm have been synthesized using chemical precipitation reaction of CdCl2 and Na2S in the presence of nonionic surfactant stabilized reverse emulsions. Sorbian monolaurate (Span 20) is used for the stabilization of emulsions. The influence of Span 20 on controlling the size and properties of CdS nanoparticles were studied. The obtained CdS nanoparticles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy-dispersive x-ray (EDX), and X-ray diffraction (XRD). The optical properties of CdS nanoparticles are investigated systematically by UV-visible absorption spectroscopy. The blue shift in the absorption region and increase in the bandgap to the larger value (2.77 eV) are attributed to the nanosize of the obtained particles.  相似文献   

9.
<正>Polymethyl methacrylate cadmium was grafted on TiO_2 surface via the surface initiated atomic transfer radical polymerization of methyl methacrylate cadmium from a surface tether initiator.The coordinated cadmium as the source precursor reacts with H_2S generates CdS nanoscrystal on TiO_2 surface.The grain size of CdS is about 5 nm and stabilized by tether polymer chains.The light absorption of CdS/TiO_2 is expanded to visible light region.  相似文献   

10.
For polyparaxylylene-CdS nanocomposite films prepared by solid-phase cryochemical synthesis, the dependences of the optical absorption spectra, photoluminescence intensity, and surface topography on the CdS concentration were examined. It was revealed that the most significant changes, such as the shift of the position of the exciton absorption band by ~1 eV and the increase of the surface roughness (the magnitude of variation of heights h max ? h min along a surface profile) occur within a CdS concentration range of from ~5 to ~8 vol %. The average size of the nanoparticles was determined from the position of the exciton absorption maximum: 2R np ? ? 3 nm at c ≤ 5 vol % and 2R np ≥ 5?7 nm at c ≥ 10 vol %. The formation of 3-nm particles at low CdS concentrations was confirmed by the existence of exciton photoluminescence with maximum at 370 nm. Exciton luminescence was not observed at c ≥ 10 vol %. By contrast, at all c values, photoluminescence with maxima at ~520 and ~570 nm, which is usually assigned to interstitial S and Cd atoms, correspondingly, and a the weak emission of unknown nature with a maximum at 545 nm were observed.  相似文献   

11.
Large-scale high quality CdS nanowires with uniform diameter were synthesized by using a rapid and simple solvothermal route. Field emission scan electron microscopy (FESEM) and transmission electron microscopy (TEM) images show that the CdS nanowires have diameter of about 26 nm and length up to several micrometres. High resolution TEM (HRTEM) study indicates the single-crystalline nature of CdS nanowires with an oriented growth along the c-axis direction. The optical properties of the products were characterized by UV-vis absorption spectra, photoluminescence spectra and Raman spectra. The resistivity, electron concentration and electron mobility of single NW are calculated by fitting the symmetric I-V curves measured on single NW by the metal-semiconductor-metal model based on thermionic field emission theory.  相似文献   

12.
A narrow band photoluminescence (PL) emission peak resulting from CdS-Au solid solution was observed when growing one-dimensional nanostructures of CdS via the vapor-liquid-solid mechanism by using Au as the catalyst. This emission peak was located at 680 nm, a wavelength longer than the near band edge emission of CdS at 520 nm, and was shown not to be caused by the usual trap states of CdS which lead to a broad band emission. Here, the one-dimensional nanostructures of CdS were grown in a simple, low-temperature (360 degrees C) metal-organic chemical vapor deposition process with a single source precursor of CdS. Straight nanowires of diameter 50-70 nm and wormlike nanorods of diameter 100-200 nm were obtained. Both the upper and lower portions of the nanorods/nanowires possessed single crystallinity as judged from the corresponding high-resolution transmission electron microscopy images and selected area electron diffraction data. This work demonstrates the feasibility of adjusting PL emission peaks of optoelectronic semiconductors through alloying with metals.  相似文献   

13.
Semiconductor nanoparticle/polystyrene latex composite materials   总被引:1,自引:0,他引:1  
Cadmium sulfide and cadmium selenide/cadmium sulfide core/shell nanoparticles stabilized with poly(cysteine acrylamide) have been bound to polystyrene (PS) latexes by three methods. First, anionic 5 nm diameter CdS particles were electrostatically attached to 130 nm surfactant-free cationic PS latexes to form stable dispersions when the amount of CdS particles was less than 10% of the amount required to form a monolayer on the surface of the PS particles or when the amount of CdS particles exceeded the amount required to form a monolayer on the PS particles. Transmission electron microscopy (TEM) showed nanoparticles on the surface of the latex particles. Fluorescence spectra showed unchanged emission from the nanoparticles. Second, anionic, surfactant-free PS latexes were synthesized in the presence of CdS and CdSe/CdS nanoparticles. TEM showed monodisperse latex particles with trapped nanoparticles. Third, surfactant-stabilized latexes were synthesized by copolymerization of styrene with vinylbenzyl(trimethyl)ammonium chloride electrostatically bound to the CdSe/CdS nanoparticle surface. Brownian motion of the submicroscopic composite particles in water was detected by fluorescence microscopy.  相似文献   

14.
硫化镉准纳米圆球的人工活性膜法控制合成及其性能研究   总被引:1,自引:0,他引:1  
吴庆生  刘金库  丁亚平  刘茜 《化学学报》2003,61(11):1824-1827
首次利用胶棉人工活性膜板,在0.1mol/L CdCl_2溶液和0.1mol/L Na_2S溶液 组成的隔膜组装体系中,成功制备了硫化镉准纳米圆球。产物粒径范围80~280nm ,平均粒径~170nm,圆球边界清晰,为立方闪锌矿多晶结构,晶格常数a=0. 5818nm。光学性质研究表明,当激发波长为390nm时,出现了波长为480nm的蓝光和 535nm的绿光两个发射峰;紫外-可见光谱在475nm处有最大吸收,与常规材料相比 “蓝移”了40nm,表现出明显的量子尺寸效应。另外还对产物合成机理进行了探讨 。  相似文献   

15.
巯萘剂表面修饰的CdS纳米微粒的合成及发光特性   总被引:6,自引:0,他引:6  
用疏萘剂(TN)作为表面修饰剂,在甲醇溶液中合成了CdS/TN纳米微粒,用TEM测得纳米微粒呈球形,其粒径约10nm,吸收光谱和荧光光谱研究表明,[S2-]/[TN]浓度比、TN和镉离子的浓度对CdS/TN纳米微粒的粒径及发光特性具有显著影响,且随着条件的改变,CdS/TN纳米微粒的发射波长红移100nm,表现出明显的量子尺寸特性.XPS显示所制得表面修饰纳米微粒的核为CdS.  相似文献   

16.
A novel single frequency stabilized Fabry-Perot (SFP) laser diode with an emission wavelength of lambda = 1590 nm for H2S gas sensing is reported. Sculpting of the multi-mode spectral distribution of a FP laser to achieve single frequency emission is carried out using post growth photolitographic processing of the device. The resulting longitudinal-mode controlled FP laser has a stabilized single frequency emission with a side mode suppression ratio (SMSR) of 40 dB. The application of this device to spectroscopic based H2S sensing is demonstrated by targeting absorption lines in the wavelength range 1588 < or = lambda < or = 1591 nm. Using wavelength modulation spectroscopy (WMS), a low detection limit of 120 ppm x m x Hz(-1/2) was estimated while targeting the absorption line at 1590.08 nm. These initial results demonstrate the potential of the stabilized FP laser diode at this wavelength as a tunable, single frequency source for spectroscopic based gas sensing.  相似文献   

17.
Synthesis and Characterization of CdSe Nanocrystals Capped by CdS   总被引:1,自引:0,他引:1  
CdSe semiconductor nanocrystals capped by CdS were synthesized in the aqueous solution with 2-mercaptoethanol as the stabilizer. The CdS capping with a higher band-gap than that of the core crystallite has successfully eliminated the surface traps. Optical absorption and fluorescence emission spectra were used to probe the effect of CdS passivation on the electronic structure of the nanocrystals. The composite CdSe/CdS nanocrystals exhibit strong, narrow(FWHM≤40 nm) and stable band-edge photoluminescence. X-ray powder diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy were used to analyze the composite nanocrystals and determine their average size, size distribution, shape, internal structure and elemental composition.  相似文献   

18.
Silica hydrogels and planar substrates were patterned with CdS nanoparticles using a photolithographic method based on the photo dissociation of thiols and cadmium-thiolate complexes. Silica hydrogels were prepared via a standard base-catalyzed route. The solvent was exchanged with an aqueous solution of CdSO4 and 2-mercaptoethanol, and the samples were then exposed to a focused ultraviolet beam. Planar substrates were patterned by illuminating a precursor solution spin coated on the substrates. CdS nanoparticles formed in the illuminated spots, and had a diameter below about 2 nm. The diameter of the spots illuminated by the UV beam could be varied from a few hundred to a few μm, on both hydrogels and planar substrates. Samples were characterized with transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and optical absorption, photoluminescence and Raman spectroscopies. All these techniques confirmed the chemical identity of the CdS nanoparticles. To investigate the mechanism of nanoparticle formation, we took absorption spectra of the precursor solution as a function of irradiation time. In unirradiated solutions, we noticed a maximum at 250 nm, characteristic of Cd-thiolate complexes. The absorption at 250 nm decreased with increasing irradiation time. A new band appeared at 265 nm for exposures around 5 min, and that band shifted to 290 nm in samples exposed for 10 min. A yellow precipitate formed after about 30 min. XRD showed that the precipitate was cubic CdS, with a mean particle size of 1.4 nm. We attribute formation of CdS to the photodissociation of the thiols and of the Cd-thiolates. UV irradiation of these precursors yields a series of species that can react with Cd2+, such as RS·, S2− and H2S. Small CdS nanoparticles form in the initial stages of illumination, and present absorption bands in the 265–290 nm region. These CdS aggregates grow, coalesce and precipitate for longer irradiation times.  相似文献   

19.
溶剂热法合成CdS纳米晶及其光学性质研究   总被引:1,自引:0,他引:1  
以硫脲和醋酸镉为原料,采用溶剂热法在不同的反应介质和温度下合成了CdS纳米晶,比较了单胺与双胺对合成CdS纳米晶形貌的影响。采用透射电镜(TEM)、X射线粉末衍射仪(XRD)和荧光分光光度计(PL)对合成的CdS纳米晶结构和光学性能进行表征。结果表明:反应温度和反应介质对其形貌有影响,在双胺的条件下,60℃时合成了纯相的六方相CdS纳米棒;双胺条件下更易生成纳米棒,且高温下晶体的结晶性更好。PL分析表明,水(溶剂)热法制备的CdS的荧光光谱图与大多数CdS类似,均在440~480 nm和550 nm处存在发射峰,但较宽的发射峰蓝移说明材料的光学性质受到材料形貌和制备方法的影响。  相似文献   

20.
采用热解柠檬酸法制备碳点(CDs),并将之与表面无包裹剂的CdS纳米晶(CdS NCs)超声复合制备CdS纳米晶@碳点(CdS NCs@CDs)复合物。研究了复合物膜阴极电致化学发光(ECL),探讨了CDs对CdS纳米晶膜ECL增强的机理。CDs分散性良好、尺寸在1.5~4 nm之间;与粒径约为4 nm的CdS纳米晶按体积比2∶3复合后,在360 nm光激发下复合物具有最强的荧光发射且表现为CDs的荧光。同时,复合物膜产生归属于激发态CdS纳米晶的最强的ECL发射,且ECL发光峰起置电势正移至-1.05 V。复合物膜的ECL发射是pH依赖的,在pH值为6时,复合物膜具有最大的ECL强度,为CdS纳米晶膜ECL强度的19倍。这种ECL增强源于CDs能束缚大量电子产生局域电场从而促进近邻CdS纳米晶激发态的形成与弛豫。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号