首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 496 毫秒
1.
Two new azido-bridged polyoxometalate compounds were synthesized in acetonitrile/methanol media and their molecular structures have been determined by X-ray crystallography. The [[(gamma-SiW10O36)Mn2(OH)2(N3)(0.5)(H2O)(0.5)]2(mu-1,3-N3)](10-) (1 a) tetranuclear Mn(III) complex, in which an end-to-end N3- ligand acts as a linker between two [(gamma-SiW10O36)Mn2(OH)2]4- units, represents the first manganese-azido polyoxometalate. The magnetic properties have been studied considering the spin Hamiltonian H = -J1(S1S2+S1*S2*)-J2(S1S1*), showing that antiferromagnetic interactions between the paramagnetic centers (g = 1.98) occur both through the di-(mu-OH) bridge (J1 = -25.5 cm(-1)) and the mu-1,3-azido bridge (J2 = -19.6 cm(-1)). The [(gamma-SiW10O36)2Cu4(mu-1,1,1-N3)2(mu-1,1-N3)2]12- (2 a) tetranuclear Cu(II) complex consists of two [gamma-SiW10O36Cu2(N3)2]6- subunits connected through the two mu-1,1,1-azido ligands, the four paramagnetic centers forming a lozenge. The magnetic susceptibility data have been fitted. This reveals ferromagnetic interactions between the four Cu(II) centers, leading to an S=2 ground state (H = -J1(S1S2+S1*S2*)-J2(S2S2*), J1 = +294.5 cm(-1), J2 = +1.6 cm(-1), g = 2.085). The ferromagnetic coupling between the Cu(II) centers in each subunit is the strongest ever observed either in a polyoxometalate compound or in a diazido-bridged Cu(II) complex. Considering complex 2 a and the previously reported basal-basal di-(mu-1,1-N3)-bridged Cu(II) complexes in which the metallic centers are not connected by other magnetically coupling ligands, the linear correlation J1 = 2639.5-24.95*theta(av) between the theta(av) bridging angle and the J1 coupling parameter has been proposed. The electronic structure of complex 2 a has also been investigated by using multifrequency high-field electron paramagnetic resonance (HF-EPR) spectroscopy between 95 and 285 GHz. The spin Hamiltonian parameters of the S = 2 ground state (D = -0.135(2) cm(-1), E = -0.003(2) cm(-1), g(x) = 2.290(5), g(y) = 2.135(10), g(z) = 2.158(5)) as well as of the first excited spin state S = 1 (D = -0.960(4) cm(-1), E = -0.080(5) cm(-1), g(x) = 2.042(5), g(y) = 2.335(5), g(z) = 2.095(5)) have been determined, since the energy gap between these two spin states is very small (1.6 cm(-1)).  相似文献   

2.
Two new Cu(II) azido polyoxometalates compounds have been synthesized, and their structures were determined by X-ray crystallography. The compound Na(14)[SiW(9)O(34)Cu(3)(N(3))(2)(OH)(H(2)O)](2) x 24H(2)O (1) is built from two [SiW(9)O(34)Cu(3)(mu(1,1,3)-N(3))(2)(mu-OH)(H(2)O)](7-) subunits where the copper centers, connected by two azido ligands and one hydroxo group, form a nearly equilateral triangle. The two subunits are related by an inversion center and connected via the two mu(1,1,3)-N(3) ligands in an end-to-end fashion, affording a hexanuclear Cu(II) cluster. Linkage of these fragments via Cu-O=W bonds leads to a bidimensional arrangement of the polyoxometalate units. The complex LiK(14)Na(9)[P(8)W(48)O(184)Cu(20)(N(3))(6)(OH)(18)] x 60H(2)O (2) consists of two {Cu(5)(OH)(4)}(6+) and two {Cu(5)(OH)(2)(mu(1,1,3,3)-N(3))}(7+) subunits connected via four mu-OH and four mu(1,1)-N(3) additional ligands, the 20 copper centers being encapsulated in the [P(8)W(48)O(184)](40-) crown polyoxotungstate ligand. 1 represents the first multidimensional compound based on azido polyoxometalate (POM) units, and 2 represents by far the largest azido POM complex isolated to date. Magnetic measurements revealed an overall antiferromagnetic behavior for both compounds. Nevertheless, the study of the variation of the magnetization with the applied field indicates that 1 possesses a triplet ground state, which can be attributed to weak ferromagnetic interaction between the S = 1/2 triangular subunits. The stability of 1 and 2 evidenced by UV-vis spectroscopy and gel filtration chromatography, in particular at pH 5, has allowed a detailed study of their redox and electrocatalytic properties. For both compounds, the stability of the Cu(II)/Cu(I) couple is remarkable compared with the observations made in other Cu(II)-substituted POMs. Electrochemical quartz crystal microbalance measurements clearly demonstrate that the formation of the Cu(I) species occurs neatly without the formation of Cu(0). The accumulation of such Cu(II) centers within the complexes is a favorable condition to envision applications involving several electrons. The electrocatalytic reduction of dioxygen and hydrogen peroxide was achieved efficiently and has shown that the reactivity increases with the nuclearity and/or the Cu/W ratio of the POM complex. The dioxygen reduction is an overall four-electron process with water as the final product. Finally, the reduction of the W centers triggers a strong electrocatalysis of solvent reduction.  相似文献   

3.
Four new copper(II) complexes of formula [Cu(2)(tppz)(dca)(3)(H(2)O)].dca.3H(2)O (1), [Cu(5)(tppz)(N(3))(10)](n)() (2), [[Cu(2)(tppz)(N(3))(2)][Cu(2)(N(3))(6)]](n)() (3), and [Cu(tppz)(N(3))(2)].0.33H(2)O (4) [tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine and dca = dicyanamide anion] have been synthesized and structurally characterized by X-ray diffraction methods. The structure of complex 1 is made up of dinuclear tppz-bridged [Cu(2)(tppz)(dca)(3)(H(2)O)](+) cations, uncoordinated dca anions, and crystallization water molecules. The copper-copper separation across bis-terdentate tppz is 6.5318(11) A. Complex 2 is a sheetlike polymer whose asymmetric unit contains five crystallographically independent copper(II) ions. These units are building blocks in double chains in which the central part consists of a zigzag string of copper atoms bridged by double end-on azido bridges, and the outer parts are formed by dinuclear tppz-bridged entities which are bound to the central part through single end-on azido bridges. The chains are furthermore connected through weak, double out-of-plane end-on azido bridges, yielding a sheet structure. The intrachain copper-copper separations in 2 are 6.5610(6) A across bis-terdentate tppz, 3.7174(5) and 3.8477(5) A across single end-on azido bridges, and from 3.0955(5) to 3.2047(7) A across double end-on azido bridges. The double dca bridge linking the chains into sheets yields a copper-copper separation of 3.5984(7) A. The structure of 3 consists of centrosymmetric [Cu(2)(tppz)(N(3))(2)](2+) and [Cu(2)(N(3))(6)](2)(-) units which are linked through axial Cu.N(azido) (single end-on and double end-to-end coordination modes) type interactions to afford a neutral two-dimensional network. The copper-copper separations within the cation and anion are is 6.5579(5) A (across the bis-terdentate tppz ligand) and 3.1034(6) A (across the double end-on azido bridges), whereas those between the units are 3.6652(4) A (through the single end-on azido group) and 5.3508(4) A (through the double end-to-end azido bridges). The structure of complex 4 is built of neutral [Cu(tppz)(N(3))(2)] mononuclear units and uncoordinated water molecules. The mononuclear units are grouped by pairs to give a rather short copper-copper separation of 3.9031(15) A. The magnetic properties of 1-4 have been investigated in the temperature range 1.9-300 K. The magnetic behavior of complexes 1 and 4 is that of antiferromagnetically coupled copper(II) dimers with J = -43.7 (1) and -2.1 cm(-)(1) (4) (the Hamiltonian being H = -JS(A).S(B)). An overall ferromagnetic behavior is observed for complexes 2 and 3. Despite the structural complexity of 2, its magnetic properties correspond to those of magnetically isolated tppz-bridged dinuclear copper(II) units with an intermediate antiferromagnetic coupling (J = -37.5 cm(-)(1)) plus a ferromagnetic chain of hexanuclear double azido-bridged copper(II) units (the values of the magnetic coupling within and between the hexameric units being +61.1 and +0.0062 cm(-)(1), respectively). Finally, the magnetic properties of 3 were successfully analyzed through a model of a copper(II) chain with regular alternating of three ferromagnetic interactions, J(1) = +69.4 (across the double end-on azido bridges in the equatorial plane), J(2) = +11.2 (through the tppz bridge), and J(3) = +3.4 cm(-)(1) (across the single end-on azido bridge).  相似文献   

4.
The coordination polymers [(Cu(N(3))(2))(2)Cu(N(3))(2)(methylpyrazine)(2)](n) 1 and [Cu(4-bromopyridine)(N(3))(2)](n) 2, were prepared from NaN(3), Cu(NO(3))(2).3H(2)O and nitrogen-containing heterocycles. 1 contains a three- and four-connected 3D (4.10(2))(2)(4(2).10(4))-dmd-net based on tetrahedral and trigonal planar nodes, whereas 2 is a sheet-structure formed by a uninodal three-connected 8(2).4 2D-net with additional BrBr (mean 3.903(2) A) and BrN(azide) (3.035(5) A) contacts. Both compounds contain end-on-type azide bridges, and 2 has in addition one end-to-end bridge as well. The corresponding magnetic interactions are J(1,2) = +14.9(6) cm(-1) for the end-on azido interactions in 1 with an additional -1.7 cm(-1) coupling through the pyrazine, and J(1) = 36(6) cm(-1) for the end-on azido interactions and J(2) = 2.5(1) cm(-1) for the orthogonal end-to-end azido interactions found in 2.  相似文献   

5.
Reaction of [Cu2(O2CMe)4(H2O)2] with 2,6-di-(2-pyridylcarbonyl)-pyridine (pyCOpyCOpy or dpcp) in MeCN-H2O 10:1, led to the pentanuclear copper(II) complex [Cu5(O2CMe)6{pyC(O)(OH)pyC(O)(OH)py}2] () which crystallizes in the triclinic P1 space group. The copper(II) atoms are arranged in an "S"-shaped configuration, and are bridged by the doubly deprotonated bis(gem-diol) form of the ligand, pyC(O)(OH)pyC(O)(OH)py2-. Magnetic susceptibility data indicate the interplay of both ferro- and antiferromagnetic intramolecular interactions stabilizing an S=3/2 ground state. Fitting of the data according to a next-nearest-neighbour model {H=-[J1(S1S2+S1'S2')+J2(S2S3+S3'S2')+J3(S1S3+S3'S1')+J4(S2S2')]} yields exchange coupling constants J1=+39.7 cm(-1), J2=-15.9 cm(-1), J3=-8.3 cm(-1) and J4=+4.3 cm(-1), leading to an S=3/2 ground state. X-Band EPR spectroscopy indicates a zero-field splitting of the ground state with |D3/2|=0.38 cm(-1).  相似文献   

6.
Three new supramolecular entities of Cu(II) were synthesized and characterized: [(Cu(H(2)O)(tmen))(2)(mu-Cu(H(2)O)(opba))](2)[(ClO(4))(2)](2).2H(2)O (1), [(Cu(H(2)O)(tmen))(2) (mu-Cu(H(2)O) (Me(2)pba))](2)[(ClO(4))(2)](2) (2), and [(Cu(H(2)O)(tmen))(Cu(tmen))(mu-Cu(OHpba))](n)() ((ClO(4))(2))(n)().nH(2)O (3), where opba = o-phenylenbis(oxamato), Me(2)pba = 2,2-dimethyl-1,3-propylenbis(oxamato), OHpba = 2-hydroxy-1,3-propylenbis(oxamato), and tmen = N,N,N'N'-tetramethylethylenediamine. The crystal structures of 1, 2, and 3 were solved. Complex 1 crystallizes in the monoclinic system, space group C2/c with a = 20.572(4) A, b = 17.279(6) A, c = 22.023(19) A, beta = 103.13(4) degrees, and Z = 8. Complex 2 crystallizes in the monoclinic system, space group P2(1)/c, with a = 16.7555(7) A, b = 13.5173(5) A, c = 17.1240(7) A, beta = 104.9840(10) degrees, and Z = 4. Complex 3 crystallizes in the orthorhombic system, space group Pca2(1) with a = 21.2859(4) A, b = 12.8286(10) A, c = 12.6456(2) A, and Z = 4. The three complexes are very similar in structure: a trinuclear Cu(II) complex with the two terminal Cu(II) ions blocked by N,N,N',N'-tetramethylethylenediamine, but with a different environment in the Cu(II) central ion. In the case of complex 1, two of these trinuclear entities are packed with a short distance between the central Cu(II) ions of two separate entities forming a hexanuclear-type compound. In the case of 2, two of these trinuclear entities are linked by a hydrogen bond between a water molecule of one terminal Cu(II) and one oxygen atom of the oxamato ligand of the neighboring entity, also forming a hexanuclear complex. In the case of complex 3, the intermolecular linkages give a one-dimensional system where the OH groups of the OHpba entities are linked to the terminal Cu(II) of the neighboring entities. The magnetic properties of the three complexes were studied by susceptibility measurements vs temperature. For complex 1, an intramolecular J value of -312.1 cm(-)(1) and a contact dipolar interaction of -0.44K were found. For complex 2 and 3 the fit was made by the irreducible tensor operator formalism (ITO). The values obtained were as follows: J(1) = -333.9 cm(-)(1) and J(2) = 0.67 cm(-)(1) for 2 and J(1) = -335.9 cm(-)(1) and J(2) = 3.5 cm(-)(1) for 3.  相似文献   

7.
Three oxamato-bridged copper(II) complexes of formula [(Cu(H(2)O)(tmen)Cu(tmen))(mu-Cu(H(2)O)(Me(2)pba))](n)((PF(6))(2))(n).2nH(2)O (1), [(Cu(H(2)O)(tmen)Cu(NCS)(tmen))(mu-Cu(H(2)O)(Me(2)pba))](2)(ClO(4))(2).4H(2)O (2), and [(Cu(H(2)O)(tmen)Cu(NCS)(tmen))(mu-Cu(H(2)O)(Me(2)pba))](2)(PF(6))(2).4H(2)O (3), where Me(2)pba = 2,2-dimethyl-1,3-propylenebis(oxamato) and tmen = N,N,N',N'-tetramethylethylenediamine, have been synthesized and characterized. Their crystal structures were solved. Complex 1 crystallizes in the monoclinic system, space group P2(1), with a = 15.8364(3) A, b =8.4592(2) A, c = 15.952 A, beta = 101.9070(10) degrees, and Z = 2. Complex 2 crystallizes in the monoclinic system, space group P2(1)/c, with a = 6.69530(10) A, b = 18.2441(3) A, c = 31.6127(5) A, beta = 90.1230(10) degrees, and Z = 4. Complex 3 crystallizes in the monoclinic system, space group P2(1)/c, with a = 6.68970(10) A, b = 18.150 A, c = 32.1949(4) A, beta = 90.0820(10) degrees, and Z = 4. The three complexes have a central core in common: a trinuclear Cu(II) complex with the two terminal Cu(II) ions blocked by N,N,N',N'-tetramethylethylenediamine. The structure of complex 1 consists of trinuclear cationic entities connected by hydrogen bonds to produce a supramolecular one-dimensional array. The structure of complexes 2 and 3 consist of trinuclear cationic entities linked by pairs by hydrogen bonds between the water molecule of the central Cu(II) and one oxygen atom of the oxamato ligand of the neighboring entity, forming a hexanuclear complex. The magnetic properties of the three complexes were studied by susceptibility vs temperature measurement. For complexes 1-3 the fit was made by the irreducible tensor operator (ITO). The values obtained were J(1) = -386.48 cm(-1) and J(2) = 1.94 cm(-1) for 1, J(1) = -125.77 cm(-1) and J(2) = 0.85 cm(-1) for 2, and J(1) = -135.50 cm(-1) and J(2) = 0.94 cm(-1) for 3. In complex 1, the coordination polyhedron of the terminal Cu(II) atoms can be considered as square pyramidal; the apical positions are filled by the oxygen atom from a water molecule in the former and a F atom of the hexafluorophosphate anion in the latter showing a quasi-planar [Cu(CuMe(2)pba)Cu] network. For complexes 2 and 3, the square pyramidal environment of the terminal Cu(II) ions was strongly modified. To our knowledge, this is the first time that the longest distance (apical) in complexes with oxamato derivatives and bidentate amines as blocking ligands has been reported in one of the oxamato arms. The great difference in J(1) values between 1 and the other two complexes is interpreted as an orbital reversal of the magnetic orbitals of the terminal Cu(II) ions in 2 and 3.  相似文献   

8.
The ditopic ligand PyPzOAP (N-[(Z)-amino(pyridin-2-yl)methylidene]-5-methyl-1-(pyridin-2-yl)-1H-pyrazole-3-carbohydrazonic acid) and the polytopic ligand 2-PzCAP (N'(3),N'(5)-bis[(1E)-1-(pyridin-2-yl)ethylidene]-1H-pyrazole-3,5-dicarbohydrazide) were synthesized in situ by condensation of methyl imino picolinate with 5-methyl-1-(2-pyridyl) pyrazole-3-carbohydrazide and 2-acetyl pyridine with pyrazole-3,5-dicarbohydrazide respectively. The ligands PyPzOAP and PzOAP (reported earlier, Dalton Trans., 2007, 1229) self-assemble to form homoleptic [2 × 2] tetranuclear M(4) (M = Cu(II) and Ni(II)) square grids structures [Cu(4)(PyPzOAP)(4)](NO(3))(4) (1), [Cu(4)(PzOAP)(4)](ClO(4))(4) (2) and [Ni(4)(PyPzOAP)(4)](NO(3))(4)·8H(2)O·2CH(3)CN (3). While the ligand 2-PzCAP forms a dicopper(II) complex [Cu(2)(2-PzCAP)(OH)(NO(3))(H(2)O)](NO(3))·2H(2)O (4). The complex 1 is a perfect square grid (a = 4.201 ?), whereas, 2 and 3 are almost square grids. All these compounds have been characterized by X-ray structural analyses and variable temperature magnetic susceptibility measurements. EPR studies have also been carried out for complexes 1, 2 and 4. In the Cu(4) grid (1), all the Cu(II) centers are in a distorted octahedral environment with N(4)O(2) chromophore, while, in complex 2, all four Cu(II) centers have a square pyramidal environment with N(3)O(2) chromophore. In complex 3, all four Ni(II) centers have distorted octahedral geometry with N(4)O(2) chromophore. In compound 4, the Cu(II) centers are in square pyramidal environment with N(3)O(2) chromophore. The magnetic properties of compounds 1 and 2 show the presence of intramolecular ferromagnetic exchange interaction (J = 5.88 cm(-1) for 1 and 4.78 cm(-1) for 2). The complex 3 shows weak intramolecular antiferromagnetic interaction (J = -4.02 cm(-1)). While, complex 4, shows strong antiferromagnetic behavior (J = -443 cm(-1)).  相似文献   

9.
Three high-nuclearity NiII-substituted polyoxometalate compounds functionalized by exogenous ligands have been synthesized and characterized. The octanuclear complexes in Na15[Na{(A-R-SiW9O34)Ni4(CH3COO)3(OH)3}2] . 4NaCl . 36H2O (1) and Na15[Na{(A-R-SiW9O34)Ni4(CH3COO)3(OH)2(N3)}2] . 32H2O (2) can be described as two {Ni4} subunits connected via a {Na(CH3COO)6} group, with the acetato ligands also ensuring in each subunit the connection between the paramagnetic centers. In 2, two azido groups replace two of the six mu-hydroxo ligands present in 1. The nonanuclear complex K7Na7[(A-R-SiW9O34)2Ni9(OH)6(H2O)6(CO3)3] . 42H2O (3) exhibits a double cubanestructure with two [(A-R-SiW9O34)Ni4(OH)3]5- subunits linked by three carbonato ligands. A ninth NiII center connected to one subunit via a carbonato ligand and a O=W group completes this asymmetric polyoxometalate.Electronic spectroscopy and electrochemical studies indicate that, while compounds 1-3 decompose in a pure aqueous medium, these complexes are very stable in a pH 6 acetate medium. The cyclic voltammetry pattern of each complex is constituted by a first eight-electron reduction wave followed by a second large-current intensity wave. The characteristics of the first waves of the complexes are clearly distinct from those obtained for their lacunary precursor [A-R-SiW9O34]10-, a feature that is due to the Ni centers in the complexes. Such observations of electroactive, stable, and highly nickel-rich polyoxometalates are not common. Measurements of the magnetic susceptibility revealed the occurrence of concomitant ferromagnetic and antiferromagnetic interactions in 1 and 3.For both of these compounds, the extension of the magnetic exchange has been determined by means of a spin Hamiltonian with three and four J constants, respectively.  相似文献   

10.
Two polyoxometalate-pillared 3D compounds, {Cu(5)(2-ptz)(6)(H(2)O)(4)(SiW(12)O(40))}·4H(2)O 1 and {Cu(9)(2-ptz)(12)(H(2)O)(6)(PMo(12)O(40))(2)}·H(2)O 2 (2-ptz = 5-(2-pyridyl)tetrazole) have been constructed based on different polyoxometalate anions, and copper-organic coordination polymer sheets by a hydrothermal method. Magnetic investigations reveal that both 1 and 2 exhibit antiferromagnetic coupling between the Cu(II) ions. Structural studies show the compound 1 exhibits a typical pcu-type net with the Sch?lfli symbol of {4(12)·6(3)}, and that compound 2 is a (3,4,6)-connected framework with novel {4(4)·6(10)·10}{6(3)}(2){6(5)·8} topology which has not been reported to date.  相似文献   

11.
Eight oxamato-bridged heterotrinuclear Ni(II)Cu(II)Ni(II) complexes of formula ([Ni(H(2)O)(dpt)](2)(mu-Cu(H(2)O)(opba)))(ClO(4))2 (1), ([Ni(H(2)O)(dien)](2)(mu-Cu(pba)))(ClO(4))(2).6H(2)O (2), ([Ni(H(2)O)(Medpt)](2)(mu-Cu(OHpba)))(ClO(4))(2).4H(2)O (3), ([Ni(H(2)O)(dien)](2)(mu-Cu(Me(2)pba)))(ClO(4))(2).2.5H(2)O (4), ([Ni(H(2)O)(dpt)](2)(mu-Cu(Me(2)pba)))(ClO(4))(2).2H(2)O (5), ([Ni(H(2)O)(dien)](2)(mu-Cu(OHpba)))(ClO(4))(2).4H(2)O (6), ([Ni(2)(dpt)(2)(mu-Cu(H(2)O)(pba))](2)(mu-N(3))(2))Na(2)(ClO(4))(4).6H(2)O (7), and ([Cu(H(2)O)(2)(dpt)Ni(2)(H(2)O)(dpt)(2)](mu-H(2)Me(2)pba(2-)))(ClO(4))(4).3H(2)O (8) in which opba = o-phenylenbis(oxamato), pba = 1,3-propylenebis(oxamato), OHpba = 2-hydroxy-1,3-propylenebis(oxamato), Me(2)pba = 2,2-dimethyl-1,3-propylenbis(oxamato), dpt = 3,3'-diaminodipropylamine, dien = 2,2'-diaminodiethylamine, and Medpt = 3,3'-diamino-N-methyldipropylamine were synthesized and characterized. The crystal structures of 1, 7, and 8 were solved. For complex 1, the trinuclear entities are linked by hydrogen bonds forming a one-dimensional system, and for complex 8, the presence of van der Waals interactions gives a one-dimensional system, too. For complex 7, the trinuclear entities are self-assembled by azido ligands, given a hexanuclear system; each of these hexanuclear entities are self-assembled through two [Na(O)(3)(H(2)O)(3)] octahedral-sharing one-edge entities, given a one-dimensional system. The magnetic behavior of complexes 2-7 was investigated by variable-temperature magnetic susceptibility measurements. Complexes 2-6 exhibit the minimum characteristic of this kind of polymetallic species with an irregular spin state structure. The Jvalue through the oxamato bridge varied between -88 cm(-1) (for 6) and -111.2 cm(-1) (for 5). For complex 7, the values obtained were J(1) = -101.7 cm(-1) (through the oxamato ligand) and J(2) = -3.2 cm(-1) (through the azido ligand).  相似文献   

12.
Two novel three-dimensional coordination polymers [Cu(6)(N(3))(12)(N-Eten)(2)](n) (1) (N-Eten=N-ethylethylenediamine) and {[Cu(9)(N(3))(18)(1,2-pn)(4)].H(2)O}(n) (2) (1,2-pn=1,2-diaminopropane) have been synthesized by the self-assembly reactions of Cu(NO(3))(2).3H(2)O, NaN(3) and small diamine ligands. Their molecular structures were determined by single-crystal X-ray diffraction. Complex 1 is composed of a neutral 3D coordination framework based on unprecedented hexanuclear copper(ii) clusters which features three types of bridging modes for azide (mu-1,1, mu-1,3 and mu-1,1,3). Complex 2 is a novel 3D coordination polymer featuring octanuclear copper-azido clusters and [Cu(diamine)(2)](2+) units which are linked by azido bridges. Magnetic studies for complex show ferromagnetic ordering at 3.5 K, where the azido bridges mediate ferromagnetic coupling between adjacent Cu(II) ions. The magnetic data for 1 were fitted to a uniform hexanuclear copper model which yielded g=2.21, J=6.26 cm(-1), zJ'=0.39 cm(-1). Complex 2 shows ferromagnetic coupling in the octanuclear unit and antiferromagnetic interaction between neighboring units.  相似文献   

13.
The reaction between [Ru(salen)(PPh3)Cl] and the 4-pyridyl-substituted nitronyl nitroxide radical (NITpPy) leads to the [Ru(salen)(PPh3)(NITpPy)](ClO4)(H2O)2 complex while the reaction with the azido anion (N3-) leads to the [Ru(salen)(PPh3)(N3)] complex 2 (where salen2- = N,N'-ethan-1,2-diylbis(salicylidenamine) and PPh3 = triphenylphosphine). Both compounds have been characterized by single crystal X-ray diffraction. The two crystal structures are composed by a [Ru(III)(salen)(PPh3)]+ unit where the Ru(III) ion is coordinated to a salen2- ligand and one PPh3 ligand in axial position. In 1 the Ru(III) ion is coordinated to the 4-pyridyl-substituted nitronyl nitroxide radical whereas in 2 the second axial position is occupied by the azido ligand. In both complexes the Ru(III) ions are in the same environment RuO2N3P, in a tetragonally elongated octhaedral geometry. The crystal packing of 1 reveals pi-stacking in pairs. While antiferromagnetic intermolecular interaction (J2 = 5.0 cm(-1)) dominates at low temperatures, ferromagnetic intramolecular interaction (J1 = -9.0 cm(-1)) have been found between the Ru(III) ion and the coordinated NITpPy.  相似文献   

14.
Inorganic-organic hybrid materials based on Keggin polyoxometalate building blocks combined with Cu(II)/Cu(I) and flexible fluconazole ligand [1-(2,4-difluorophenyl)-1,1-bis[(1H-1,2,4-triazol-1-yl)methyl]methanol] (Hfcz) have been obtained by hydrothermal methods, namely, [Cu(II)(2)(Hfcz)(4)(SiW(12)O(40))].3H(2)O (1), [Cu(II)(4)(fcz)(4)(H(2)O)(4)(SiMo(12)O(40))].6H(2)O (2), [Cu(II)(2)(fcz)(2)][Cu(II)(4)(fcz)(4)(SiW(12)O(40))][Cu(II)(2)(fcz)(2)(H(2)O)(2)(SiW(12)O(40))].6H(2)O (3), (Et(3)NH)(2)[Cu(I)(2)(Hfcz)(2)(SiW(12)O(40))].2H(2)O (4), (Et(3)NH)(2)[Cu(I)(2)(Hfcz)(2)(SiW(12)O(40))].H(2)O (5) and [Cu(I)(4)(Hfcz)(4)(SiMo(12)O(40))] (6). Their structures have been determined by single-crystal X-ray diffraction analyses, and the compounds are further characterized by elemental analyses, IR spectra and thermogravimetric (TG) analyses. In 1, Cu(II) cations are bridged by fluconazole ligands to form a 3D lvt coordination polymeric network, which is connected by (SiW(12)O(40))(4-) anions to form a complicated 3D (4,6)-connected framework with the topology of (4(2).6(4))(4(6).6(7).8(2))(2). In 2, two fcz(-) anions chelate two Cu(2+) cations to form a [Cu(fcz)](2)(2+) dimer, which is bridged by (SiW(12)O(40))(4-) polyanions to generate a 2D (4,4) grid. Compound 3 is formed by three types of co-crystallizing subunits including a dimer [Cu(fcz)](2)(2+), a dumbbell molecule [Cu(4)(fcz)(4)(SiW(12)O(40))] and an infinite chain {[Cu(2)(fcz)(2)(H(2)O)(2)(SiW(12)O(40))](2-)}(infinity). In compounds 4 and 5, Hfcz ligands link Cu(+) cations to generate 1D coordination polymeric units, and (SiW(12)O(40))(4-) polyanions connect these metal-organic units to form two types of (6(3)) sheets which are topological isomerism. In compound 6, (SiMo(12)O(40))(4-) polyanions fixed in Cu(I)-Hfcz square rings are further extended into a 2D sheet via linking Cu(I) atoms of different rings. By carefully inspection of the structures of 1-6, it is believed that various transition-metal organic units and Keggin polyanions with different coordination modes are important for the formation of the different structures. In addition, electrochemical behaviors of compounds 1, 2, 5 and 6 have been investigated.  相似文献   

15.
Syntheses, structures, and magnetic properties of novel trinuclear complexes of the same motif [M{Cu(pz2bg)2}M]4+ (M = CuII, NiII, CoII, MnII), catena-[Cu2{Cu(pz2bg)2}(Hpz)2(PhSO3)2](PhSO3)2.4H2O (2.4H2O), [Ni2{Cu(pz2bg)2}(MeOH)2(H2O)4](NO3)4 (3), [Co2{Cu(pz2bg)2}(NO3)2(EtOH)2](NO3)2 (4), and [Mn2{Cu(pz2bg)2}(NO3)4(MeCN)2] (5), which include the complex ligand [Cu(pz2bg)2] (1), are reported (Hpz = pyrazole, pz2bg- = di(pyrazolecarbimido)aminate; bispyrazolyl derivative of biguanidate). The reaction of Cu(ClO4)2.6H2O, sodium dicyanamide, Hpz, and PhSO3H.H2O (1:2:4:4) in MeOH yielded blue crystals of [Cu2(1)(Hpz)2(PhSO3)2](PhSO3)2.4H2O (2.4H2O). In 2, the tricopper(II) units, which consist of two Cu(II) ions bridged by 1, are linked by benzenesulfonate anions to form a ladder structure. Complex 1 was isolated by removing the terminal Cu(II) ions from 2 with use of Na(4)edta. Complexes 3-5 were obtained by the reaction of 1 with an excess of each M(II) ion. In 2-5, the adjoining metal ions are ferromagnetically coupled via the pz2bg- ligand with J values of +7.2(1), +7.5(1), +2.7(1), and +0.3(1) cm(-1), respectively, using a spin Hamiltonian H = -2J(S(M1)S(Cu) + S(Cu)S(M2)). The ferromagnetic interaction was attributed to the strict orthogonality of magnetic dsigma orbitals, which are controlled by the kappa3N:kappa2N bridging geometry of the pz2bg- ligands.  相似文献   

16.
A novel dodecanuclear complex, [{(HL)(L)(DMF)Cu(II)Gd(III)(DMF)(H(2)O)}(6)]·6DMF (1; DMF = N,N-dimethylformamide), has been obtained using the ligand resulting from the condensation of 3-formylsalicylic acid with hydroxylamine (H(3)L). The exchange interaction between the phenoxo-bridged Cu(II) and Gd(III) ions is weak ferromagnetic (J = +1.01 cm(-1)). The combination of a high-spin ground state with small anisotropy leads to a significant magnetocaloric effect [-ΔS(m)(0-7 T) = 23.5 J K g(-1) K(-1) at ~2 K].  相似文献   

17.
The tetranuclear complexes [Fe(4)(pypentO)(pym)(3)(Oac)(NCS)(3)] x 1.5EtOH (1), [Fe(4)(pypentO)(pym)(Oac)(2)(NCS)(2)(MeO)(2)(H(2)O)] x H(2)O (2), [Fe(2)(pypentO)(NCO)(3)](2) (3), and [Fe(2)(pypentO)(N(3))(3)](2) (4) have been prepared, and their structure and magnetic properties have been studied (pypentOH = 1,5-bis[(2-pyridylmethyl)amino]pentan-3-ol, pymH = 2-pyridylmethanol). The X-ray diffraction analysis of 1 (C(43)H(53)N(10)O(7.5)S(3)Fe(4), monoclinic, P2(1)/n, a = 11.6153(17) A, b = 34.391(17) A, c = 14.2150(18) A, beta = 110.88(5) degrees, V = 5305(3) A(3), Z = 4) and 2 (C(31)H(45)N(7)O(10)S(2)Fe(4), monoclinic, C2/c, a = 19.9165(17) A, b = 21.1001(12) A, c = 21.2617(19) A, beta = 104.441(10) degrees, V = 8652.7(12) A(3), Z = 8) showed a Fe(4)O(4) cubane-like arrangement of four iron(II) atoms, four mu(3)-O bridging ligands, one (1) or two (2) syn-syn bridging acetates. The X-ray diffraction analysis of 3 (C(40)H(46)N(14)O(8)Fe(4), monoclinic, P2(1)/c, a = 11.7633(18) A, b = 18.234(3) A, c = 10.4792(16) A, beta = 99.359(18) degrees, V = 2217.7(6) A(3), Z = 2) and 4 (C(34)H(46)N(26)O(2)Fe(4), monoclinic, P2(1)/c, V = 4412.4(10) A(3), a = 23.534(3) A, b = 18.046(2) A, c = 10.4865(16) A, beta = 97.80(2) degrees, Z = 4) showed a zigzag bis-dinuclear arrangement of four iron(II) cations, two mu(2)-O bridging pypentO ligands, four mu(2)-N-cyanato bridging ligands (3) or four end-on azido bridging ligands (4): they are the first examples of cyanato and azido bridged discrete polynuclear ferrous compounds, respectively. The M?ssbauer spectra of 1 are consistent with four different high-spin iron(II) sites in the Fe(4)O(4) cubane-type structure. The M?ssbauer spectra of 3 are consistent with two high-spin iron(II) sites (N(5)O and N(4)O). Below 190 K, the M?ssbauer spectra of 4 are consistent with one N(5)O and two N(4)O high-spin iron(II) sites. The temperature dependence of the magnetic susceptibility was fitted with J(1) approximately 0 cm(-1), J(2) = -1.3 cm(-1), J(3) = 4.6 cm(-1), D = 6.4 cm(-1), and g = 2.21 for 1; J(1) = 2.6 cm(-1), J(2) = 2.5 cm(-1), J(3) = - 5.6 cm(-1), D = 4.5 cm(-1), and g = 2.09 for 2; J(1) = 1.5 cm(-1), J(2) = 0.2 cm(-1), D = - 5.6 cm(-1), D' = 4.5 cm(-1), and g = 2.14 for 3; and J(1) = - 2.6 cm(-1), J(2) = 0.8 cm(-1), D= 6.3 cm(-1), D' = 1.6 cm(-1), and g = 2.18 for 4. The differences in sign among the J(1), J(2), and J(3) super-exchange interactions indicate that the faces including only mu(3)-OR bridges exhibit ferromagnetic interactions. The nature of the ground state in 1-3 is confirmed by simulation of the magnetization curves at 2 and 5 K. In the bis-dinuclear iron(II) compounds 3 and 4, the J(2) interaction resulting from the bridging of two Fe(2)(pypentO)X(3) units through two pseudo-halide anions is ferromagnetic in 3 (X = mu(2)-N-cyanato) and may be either ferro- or antiferromagnetic in 4 (X = end-on azido). The J(1) interaction through the central O(alkoxo) and pseudo-halide bridges inside the dinuclear units is ferromagnetic in 3 (X = mu(2)-N-cyanato) and antiferromagnetic in 4 (X = end-on azido). In agreement with the symmetry of the two Fe(II) sites in complexes 3 and 4, D (pentacoordinated sites) is larger than D' (octahedral sites).  相似文献   

18.
Niu Jy  You Xz  Duan Cy  Fun Hk  Zhou Zy 《Inorganic chemistry》1996,35(14):4211-4217
A solvated complex of alpha-H(4)SiW(12)O(40).4HMPA.2H(2)O composed the heteropolytungstate alpha-H(4)SiW(12)O(40) and the organic substrate hexamethylphosphoramide (HMPA) has been synthesised, purified, and characterized. The electronic spectra (lambda = 220-500 nm) as well as the (1)H NMR spectra for the title compound dissolved in CD(3)CN establish that this complex dissociates into free SiW(12)O(40)(4)(-) and HMPA moieties in solution unless the organic substrate HMPA is present in very high concentrations. The solid reflectance electronic spectra and IR spectra indicate that there is interaction between the alpha-H(4)SiW(12)O(40) and the organic substrate. The complex has no photosensitivity under irradiation of sunlight, but under the near-UV light result in a charge transfer by oxidation of the HMPA and the reduction of the polyoxometalate. Light yellow polyhedrons of the title compound crystallize from the aqueous solvent of acetonitrile and aqueous solution as the formula of alpha-H(4)SiW(12)O(40).4HMPA.2H(2)O in the monoclinic, space group P2(1). The unit cell has a = 12.791(3) ?, b = 22.103(6) ?, c = 15.532(4) ?, beta = 102.860(10) degrees, and Z = 2. From the bond-valence parameters, it was found that the four hydrogen atoms of the polyoxometalate were combined with the N atoms of the four HMPA respectively. The title compound shows a certain second-order and third-order nonlinear optical response of I(2)(omega) = 0.7I(2)(omega)(KDP) and chi((3)) = 2.63 x 10(-)(11) esu, respectively.  相似文献   

19.
Two polyoxometalate assemblies, TBA(9)[{γ-H(2)SiW(10)O(36)Al(2)(μ-OH)(2)(μ-OH)}(3)] (1; TBA = tetra-n-butylammonium) and TBA(6)Li(3)[{γ-H(2)SiW(10)O(36)Al(2)(μ-OH)(2)(μ-OH)}(3)]·18H(2)O (2), were synthesized by trimerization of a dialuminum-substituted silicotungstate monomer. Both 1 and 2 possessed a layered structure composed of a basal sheet unit [TBA(3){γ-H(2)SiW(10)O(36)Al(2)(μ-OH)(2)(μ-OH)}(3)](6-) and interlayer cations. The interconversion between 1 and 2 reversibly took place through interlayer cation exchange.  相似文献   

20.
Copper(II) complexes (1-3) of a sterically constrained phenol-based tetradentate N(2)O(2) ligand 1,4-bis(2-hydroxy-3,5-dimethylbenzyl)piperazine (H(2)L) have been reported. The associated anions of the copper(II) ion precursors have profound influence on the stoichiometry of the products. Thus, with perchlorate ion, the product is a binuclear compound [Cu(2)L(2)] (1), while with coordinating anions viz. Cl(-) and N(3)(-), the products [Cu(3)L(2)Cl(2)(H(2)O)].1/2H(2)L (2) and [Cu(3)L(2)(N(3))(2)(CH(3)OH)].4H(2)O (3) have triangulo trinuclear composition. The syntheses, X-ray structures, and spectroscopic and magnetic properties of these complexes are described. Compound 1 has a noncentrosymmetric structure with a rectangular Cu(2)(OPh)(2) core. It appears to be a rare example of a phenolato-bridged Cu(II) dimer exhibiting ferromagnetic interactions (J = 0.93 cm(-)(1)), a behavior in agreement with the theoretical predictions but seldom observed experimentally. In compounds 2 and 3, the copper centers are triangularly disposed, and the molecules have a shape much like that of a butterfly. The terminal copper centers Cu(1) and Cu(2) in 2 and 3 have distorted square pyramidal geometry, connected to each other by a bridging chloro- (in 2) or azido ligand (in 3) in "end to end" fashion. The central copper center (Cu(3) in 2 and Cu in 3) in both the compounds has distorted square planar geometry. The separations between the metal centers, viz. Cu(1)...Cu(2), Cu(2)...Cu(3), and Cu(3)...Cu(1), are 4.826, 3.214, and 3.244 A, respectively, in 2. The corresponding distances in 3 are 5.590, 3.178, and 3.485 A, respectively. The overall magnetic behaviors in 2 and 3 are consistent with antiferromagnetic interactions between the spin centers. In 3, the exchange couplings between the terminal and central copper centers J(Cu(1))(-)(Cu) and J(Cu(2))(-)(Cu) appear to be equal (-234 cm(-)(1)), resulting in an S = (1)/(2) ground state at temperatures near or below 77 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号