首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Lewis acid (C6F5)3B was reacted with ICN, NH2CN, C3N3X3 (X = H, Cl, F). The resulting Lewis acid base adducts ( 1—5 ) were fully characterized by analytic and spectroscopic methods. Additionally, the structures of the adducts 1—4 were determined by single crystal X‐ray analyses. It has been qualitatively shown, that a high field shift of the 11B as well as the 19F NMR resonances of the o‐F atoms of the C6F5‐substituents suggests a longer B—N distance.  相似文献   

2.
The straightforward coordination of the Lewis acid B(C6F5)3 to classical, non‐emitting aldehydes results in solid‐state photoluminescence. Variation of the electronic properties of the carbonyl moieties lead to the modulation of the solid‐state emission colors, covering the entire visible spectrum with quantum yields up to 0.64. Steady‐state spectroscopy in combination with X‐ray diffraction analysis and DFT calculations confirm that intermolecular interactions between the Lewis adducts are responsible for the observed luminescence. Alteration of the latter interactions induces, moreover, remarkable solid‐state phenomena such as piezochromism. The versatility and simplicity of our approach facilitate the future development of solid‐state emitting materials.  相似文献   

3.
Highly efficient B(C(6)F(5))(3)-catalyzed hydrosilylation of olefins   总被引:1,自引:0,他引:1  
A convenient and highly efficient method for the Lewis acid-catalyzed trans-selective hydrosilylation of alkenes has been developed. The mechanism of this novel protocol operates via direct addition of silylium type species across C=C bond followed by trapping of the resultant carbenium ion with boron-bound hydride. A number of diversely substituted silanes possessing both aryl and alkyl groups at silicon atom were efficiently prepared using this hydrosilylation methodology. The possibility to employ aryl-containing hydrosilanes in this reaction opens broad capabilities for the synthesis of alcohols via a trans-selective hydrosilylation/Tamao-Fleming oxidation sequence, complementary to the existing cis-selective hydroboration/oxidation protocol.  相似文献   

4.
A phosphinine-borane adduct of a Me3Si-functionalized phosphinine and the Lewis acid B(C6F5)3 has been synthesized and characterized crystallographically for the first time. The reaction strongly depends on the nature of the substituents in the α-position of the phosphorus heterocycle. In contrast, the reaction of B2H6 with various substituted phosphinines leads to an equilibrium between the starting materials and the phosphinine–borane adducts that is determined by the Lewis basicity of the phosphinine. The novel phosphinine borane adduct ( 6 -B(C6F5)3) shows rapid and facile insertion and [4+2] cycloaddition reactivity towards phenylacetylene. A hitherto unknown dihydro-1-phosphabarrelene is formed with styrene. The reaction with an ester provides a new, facile and selective route to 1-R-phosphininium salts. These salts then undergo a [4+2] cycloaddition in the presence of Me3Si−C≡CH and styrene to cleanly form unprecedented derivatives of 1-R-phosphabarrelenium salts.  相似文献   

5.
A broad range of benzaldimines and ketimines can be hydrosilated efficiently, employing B(C(6)F(5))(3) as a catalyst in conjunction with PhMe(2)SiH. Spectral evidence supports the intermediacy of a silyliminium cation with a hydridoborate counterion formed via abstraction of a hydride from PhMe(2)SiH by B(C(6)F(5))(3) in the presence of imines.  相似文献   

6.
4,5‐Dimethyl‐1,2‐bis(1‐naphthylethynyl)benzene ( 12 ) undergoes a rapid multiple ring‐closure reaction upon treatment with the strong boron Lewis acid B(C6F5)3 to yield the multiply annulated, planar conjugated π‐system 13 (50 % yield). In the course of this reaction, a C6F5 group was transferred from boron to carbon. Treatment of 12 with CH3B(C6F5)2 proceeded similarly, giving a mixture of 13 (C6F5‐transfer) and the product 15 , which was formed by CH3‐group transfer. 1,2‐Bis(phenylethynyl)benzene ( 8 a ) reacts similarly with CH3B(C6F5)2 to yield a mixture of the respective C6F5‐ and CH3‐substituted dibenzopentalenes 10 a and 16 . The reaction is thought to proceed through zwitterionic intermediates that exhibit vinyl cation reactivities. Some B(C6F5)3‐substituted species ( 26 , 27 ) consequently formed by in situ deprotonation upon treatment of the respective 1,2‐bis(alkynyl)benzene starting materials ( 24 , 8 ) with the frustrated Lewis pair B(C6F5)3/P(o‐tolyl)3. The overall formation of the C6F5‐substituted products formally require HB(C6F5)2 cleavage in an intermediate dehydroboration step. This was confirmed in the reaction of a thienylethynyl‐containing starting material 21 with B(C6F5)3, which gave the respective annulated pentalene product 23 that had the HB(C6F5)2 moiety 1,4‐added to its thiophene ring. Compounds 12 – 14 , 23 , and 26 were characterized by X‐ray diffraction.  相似文献   

7.
8.
An N,P‐heterocyclic germylene/B(C6F5)3 Lewis adduct 2 presenting multi‐reactive sites (P/B Lewis pair, germylene, Ge=P π‐bond) is reported. In contrast to classical frustrated Lewis pairs or divalent Group 14 element species, 2 is able to activate two small molecules simultaneously. Of particular interest, 2 reacts with silanes leading to the formation of original cationic germylenes 3 , and can be used as a metal‐free catalyst for selective CO2‐hydrosilylation to H2C(OSiEt3)2.  相似文献   

9.
A molecule that releases the strong organometallic Lewis acid B(C(6)F(5))(3) upon irradiation with 254 nm light has been developed. This photo Lewis acid generator (PhLAG) now enables the photocontrolled initiation of several reactions catalyzed by this important Lewis acid. Herein is described the synthesis of the triphenylsulfonium salt of a carbamato borate based on a carbazole function, its establishment as a PhLAG, and the application of the photorelease of B(C(6)F(5))(3) to the fabrication of thin films of a polysiloxane material.  相似文献   

10.
The strong organoborane Lewis acid B(C(6)F(5))(3) catalyzes the hydrosilation (using R(3)SiH) of aromatic and aliphatic carbonyl functions at convenient rates with loadings of 1-4%. For aldehydes and ketones, the product silyl ethers are isolated in 75-96% yield; for esters, the aldehydes produced upon workup of the silyl acetal products can be obtained in 45-70% yield. Extensive mechanistic studies point to an unusual silane activation mechanism rather than one involving borane activation of the carbonyl function. Quantitative kinetic studies show that the least basic substrates are hydrosilated at the fastest rates; furthermore, increased concentrations of substrate have an inhibitory effect on the observed reaction rate. Paradoxically, the most basic substrates are reduced selectively, albeit at a slower rate, in competition experiments. The borane thus must dissociate from the carbonyl to activate the silane via hydride abstraction; the incipient silylium species then coordinates the most basic function, which is selectively reduced by [HB(C(6)F(5))(3)](-). In addition to the kinetic data, this mechanistic proposal is supported by a kinetic isotope effect of 1.4(5) for the hydrosilation of acetophenone, the observation that B(C(6)F(5))(3) catalyzes H/D and H/H scrambling in silanes in the absence of substrate, computational investigations, the synthesis of models for proposed intermediates, and other isotope labeling and crossover experiments.  相似文献   

11.
The Lewis acid B(C(6)F(5))(3) has been found to be an efficient catalyst for the direct hydrogenation of imines and the reductive ring-opening of aziridines with H(2) under mild conditions; addition of a bulky phosphine allows for the reduction of protected nitriles.  相似文献   

12.
Mechanistic studies on the B(C(6)F(5))(3) catalyzed allylstannation of isomeric substituted benzaldehydes are reported. Confirming a report by Maruoka et al., good (5:1) to excellent (>20:1) selectivities for ortho over para isomers are observed when 1:1 mixtures (X = OMe, Cl, F, OTBS) are allylstannated with C(3)H(5)SnBu(3) in the presence of B(C(6)F(5))(3) (2.5% per CHO). The best selectivities are observed for the anisaldehydes. Multinuclear NMR studies on solutions of B(C(6)F(5))(3) and C(3)H(5)SnBu(3) (1:1 to 1:5) show that the borane abstracts the allyl group from the organotin reagent, forming an adduct (C(6)F(5))(3)B...CH(2)CHCH(2)SnBu(3), 1, or ion pair [(C(6)F(5))(3)BCH(2)CH=CH(2)](-)[Bu(3)SnCH(2)CHCH(2)SnBu(3)](+), 2, depending on the reagent ratio. These compounds are important in the mechanism of Lewis acid catalyzed 1,3-isomerization of substituted allyl stannanes. When allyltin reagent is added to solutions of B(C(6)F(5))(3) and ortho-anisaldehyde (1:5) at -60 degrees C, conversion to the stannylium ion pair [Bu(3)Sn(ortho-anisaldehyde)(2)](+)[o-ArCH(allyl)OB(C(6)F(5))(3)](-), o,o-4, is observed. The structure of this species was confirmed by (1)H, (11)B, (19)F, and (119)Sn NMR spectroscopy and by forming related ion pairs (o-5 and o,o-5) utilizing the [B(C(6)F(5))(4)](-) counteranion via reaction of [Bu(3)Sn](+)[B(C(6)F(5))(4)](-) with aldehyde. The anion in o,o-4 is formed via direct allylation of the ortho-anisaldehyde/B(C(6)F(5))(3) adduct o-3, while the cation arises upon aldehyde ligation of the resulting tributylstannylium ion. The crystal structure of the related derivative ortho-C(6)H(4)(OMe)CHO x SnMe(3)BF(4), 6, showed that the aldehyde binds the tin nucleus only through the carbonyl oxygen. Similar reactions using para-anisaldehyde show that formation of p,p-4 occurs at a much slower rate, again demonstrating the preference for the ortho substituted substrates. For similar experiments using benzophenone, however, formation of the ion pair [Bu(3)Sn(Ph(2)CO)(2)](+)[(C(3)H(5))B(C(6)F(5))(3)](-), 8, was observed, illustrating the differences subtle changes in substrate can bring. Ion pair 8 is formed via the trapping of 1 by the benzophenone substrate. In the presence of excess aldehyde and allyltin reagent, ion pair o,o-4 catalyzes the allylstannation of aldehyde to give the product stannyl ether. Several lines of experimental evidence suggest this is the true catalyst in the system. The chemoselectivity observed thus does not rely on classical chelation control in any way. Rather, we propose that the ortho donor group stabilizes the developing positive charge at the beta carbon of the allyl group and the tin atom during the allylation event. This stabilization renders the ortho substituted substrates kinetically favored toward allylation irrespective of the Lewis acid employed.  相似文献   

13.
The polymethylhydrosiloxane-B(C(6)F(5))(3) combination is found to be a versatile carbonyl defunctionalization system under mild and rapid conditions. For the first time, B(C(6)F(5))(3) has been used as a nonconventional Lewis acid catalyst to activate PMHS. Aromatic and aliphatic carbonyl compounds were effectively reduced to give the corresponding alkanes in high yields.  相似文献   

14.
15.
The primary alcohols 1a-e and ethers 4a-d were effectively reduced to the corresponding hydrocarbons 2 by HSiEt(3) in the presence of catalytic amounts of B(C(6)F(5))(3). To the best of our knowledge, this is the first example of catalytic use of Lewis acid in the reduction of alcohols and ethers with hydrosilanes. The secondary alkyl ethers 4j,k enabled cleavage and/or reduction under similar reaction conditions to produce either the silyl ethers 3m-n or the corresponding alcohol 5a upon subsequent deprotection with TBAF. It was found that the secondary alcohols 1g-i and tertiary alcohol 1j, as well as the tertiary alkyl ether 4l, did not react with HSiEt(3)/(B(C(6)F(5))(3) reducing reagent at all. The following relative reactivity order of substrates was found: primary > secondary > tertiary. A plausible mechanism for this nontraditional Lewis acid catalyzed reaction is proposed.  相似文献   

16.
The synthesis and characterization of a series of tricarbastannatranes, in the solid state and in solution, are described. The structures of the complexes [N(CH2CH2CH2)3Sn](BF4), [N(CH2CH2CH2)3Sn](SbF6), [N(CH2CH2CH2)3Sn]4[(SbF6)3Cl], and [(N(CH2CH2CH2)3Sn)2OH][MeB(C6F5)3] were determined by X‐ray crystallography. Furthermore, the B(C6F5)3‐promoted conjugate addition of alkyl‐tricarbastannatranes to benzylidene derivatives of Meldrum’s acid was investigated, and detailed mechanistic studies are presented.  相似文献   

17.
Lewis acid–base pair chemistry has been placed on a new level with the discovery that adduct formation between an electron donor (Lewis base) and acceptor (Lewis acid) can be inhibited by the introduction of steric demand, thus preserving the reactivity of both Lewis centers, resulting in highly unusual chemistry. Some of these highly versatile frustrated Lewis pairs (FLP) are capable of splitting a variety of small molecules, such as dihydrogen, in a heterolytic and even catalytic manner. This is in sharp contrast to classical reactions where the inert substrate must be activated by a metal-based catalyst. Very recently, research has emerged combining the two concepts, namely the formation of FLPs in which a metal compound represents the Lewis base, allowing for novel chemistry by using the heterolytic splitting power of both together with the redox reactivity of the metal. Such reactivity is not restricted to the metal center itself being a Lewis acid or base, also ancillary ligands can be used as part of the Lewis pair, still with the benefit of the redox-active metal center nearby. This Minireview is designed to highlight the novel reactions arising from the combination of metal oxido transition-metal or rare-earth-metal compounds with the Lewis acid B(C6F5)3. It covers a wide area of chemistry including small molecule activation, hydrogenation and hydrosilylation catalysis, and olefin metathesis, substantiating the broad influence of the novel concept. Future goals of this young and exciting area are briefly discussed.  相似文献   

18.
The strong boron Lewis acid tris(pentafluorophenyl)borane B(C6F5)3 is known to catalyze the dehydrogenative coupling of certain amines and hydrosilanes at elevated temperatures. At higher temperature, the dehydrogenation pathway competes with cleavage of the C?N bond and defunctionalization is obtained. This can be turned into a useful methodology for the transition‐metal‐free reductive deamination of a broad range of amines as well as heterocumulenes such as an isocyanate and an isothiocyanate.  相似文献   

19.
Preparation and characterization of the dimeric Lewis superacid [Al(OTeF5)3]2 and various solvent adducts is presented. The latter range from thermally stable adducts to highly reactive, weakly bound species. DFT calculations on the ligand affinity of these Lewis acids were performed in order to rank their remaining Lewis acidity. An experimental proof of the Lewis acidity is provided by the reaction of solvent-adducts of Al(OTeF5)3 with [PPh4][SbF6] and OPEt3, respectively. Furthermore, their reactivity towards chloride and pentafluoroorthotellurate salts as well as (CH3)3SiCl and (CH3)3SiF is shown. This includes the formation of the dianion [Al(OTeF5)5]2−.  相似文献   

20.
Herein, we report the B(C6F5)3-catalyzed E-selective isomerization of alkenes. The transition-metal-free method is applicable across a diverse array of readily accessible substrates, giving access to a broad range of synthetically useful products containing versatile stereodefined internal alkenes. The reaction mechanism was investigated by using synthetic and computational methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号