首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Graphene Oxide (GO) sheets, suspended in an aqueous solution, were deposited on freshly cleaved highly oriented pyrolytic graphite (HOPG) and studied using Raman spectroscopy, atomic force microscopy (AFM) and scanning tunneling microscopy (STM). AFM phase imaging shows a distinct contrast between GO and the underlying HOPG substrate. Raman spectroscopy clearly showed the presence of GO sheets on the top of HOPG substrate. The AFM and STM images also reveal wrinkling, folding, and tearing of individual GO sheets after depositing onto an HOPG substrate. We have also observed a distinct cracking of a GO sheet after folding. We attribute this new cracking phenomenon to a weakening of C–C bonds during the oxidation of a graphene sheet.  相似文献   

2.
Scanning probe microscopy study of exfoliated oxidized graphene sheets   总被引:1,自引:0,他引:1  
Exfoliated oxidized graphene (OG) sheets, suspended in an aqueous solution, were deposited on freshly cleaved HOPG and studied by ambient AFM and UHV STM. The AFM images revealed oxidized graphene sheets with a lateral dimension of 5–10 μm. The oxidized graphene sheets exhibited different thicknesses and were found to conformally coat the HOPG substrate. Wrinkles and folds induced by the deposition process were clearly observed. Phase imaging and lateral force microscopy showed distinct contrast between the oxidized graphene and the underlying HOPG substrate. The UHV STM studies of oxidized graphene revealed atomic scale periodicity showing a (0.273 ± 0.008) nm × (0.406 ± 0.013) nm unit cell over distances spanning few nanometers. This periodicity is identified with oxygen atoms bound to the oxidized graphene sheet. I(V) data were taken from oxidized graphene sheets and compared to similar data obtained from bulk HOPG. The dI/dV data from oxidized graphene reveals a reduction in the local density of states for bias voltages in the range of ±0.1 V.  相似文献   

3.
Superperiodic patterns were observed by STM on two kinds of finite-sized graphene sheets. One is nanographene sheets inclined from a highly oriented pyrolitic graphite (HOPG) substrate and the other is a several-layer-thick graphene sheets with dislocation-network structures against a HOPG substrate. As for the former, the in-plane periodicity increased gradually in the direction of inclination, and it is easily changed by attachment of a nanographite flake on the nanographene sheets. The oscillation pattern can be explained by the interference of electron waves confined in the inclined nanographene sheets. As for the latter, patterns and their corrugation amplitudes depended on the bias voltage and on the terrace height from the HOPG substrate. The interference effect by the perturbed and unperturbed waves in the overlayer is responsible for the patterns whose local density of states varies in space.  相似文献   

4.
The films of few-layer graphene are formed through laser exfoliation of a highly ordered pyrolytic graphite(HOPG), without a catalytic layer for the growth process. The femtosecond(fs) laser exfoliation process is investigated at different laser fluences and substrate temperature. For fs laser exfoliation of HOPG, the few-layer graphene is obtained at 473 K under an optimal laser fluence. The formation of few-layer graphene is explained by removal of intact graphite sheets occurred by an optimal laser fluence ablation. The new insights may facilitate the controllable synthesis of large area few-layer graphene.  相似文献   

5.
Transferring high-quality exfoliated graphene flakes onto different substrates while keeping the graphene free of polymer residues is of great importance, but at the same time very challenging. Currently, the only feasible way is the so-called all-dry "pick-and-lift" method, in which a hexagonal boron nitride(hBN) flake is employed to serve as a stamp to pick up graphene from one substrate and to lift it down onto another substrate. The transferred graphene samples, however,are always covered or encapsulated by hBN flakes, which leads to difficulties in further characterizations. Here, we report an improved "pick-and-lift" method, which allows ultra-clean graphene flakes to be transferred onto a variety of substrates without hBN coverage. Basically, by exploiting the superlubricity at the graphene/hBN stack interface, we are able to remove the top-layer hBN stamp by applying a tangential force and expose the underneath graphene.  相似文献   

6.
Although it is important for the study of graphene, identifying and characterizing the number of graphene layers is challenging. In this paper, we calculate graphene’s transmission. The result shows that the phase change is more sensitive than the intensity change when light passes through graphene in some THz frequencies. Based on this fact, a simple route is presented for identifying the single or few layers of graphene sheets by using terahertz phase contrast microscopy (TPCM). The route is fast, and easy to be carried out.  相似文献   

7.
Scanning tunneling microscopy was used to compare the morphologies of Ru nanoparticles deposited onto highly-oriented graphite surfaces using two different physical vapour deposition methods; (1) pre-formed mass-selected Ru nanoparticles with diameters between 2 nm and 15 nm were soft-landed onto HOPG surfaces using a gas-aggregation source and (2) nanoparticles were formed by e-beam evaporation of Ru films onto HOPG. The particles generated by the gas-aggregation source are round in shape with evidence of facets resolved on the larger particles. Annealing these nanoparticles when they are supported on unsputtered HOPG resulted in the sintering of smaller nanoparticles, while larger particles remained immobile. Nanoparticles deposited onto sputtered HOPG surfaces were found to be stable against sintering when annealed. The size and shape of nanoparticles deposited by e-beam evaporation depend to a large extent on the state of the graphite support and the temperature. Ru deposition onto unsputtered HOPG is characterised by bimodal growth with large flat particles formed on the substrate terraces and smaller diameter particles aligned along the substrate steps. Evaporation onto sputtered HOPG results in the formation of 2 nm round particles with a narrow size distribution. Finally, thermal deposition onto both sputtered and unsputtered HOPG at 660 °C results in larger particles showing a flat Ru(0 0 0 1) top facet.  相似文献   

8.
《Current Applied Physics》2020,20(10):1190-1194
A high-speed residue-free transfer method using PDMS (polydimethylsiloxane) stamp and water infiltration between graphene and a hydrophilic surface is reported. Monolayer graphene was transferred from an enhanced fluorinated Al2O3 surface using PDMS. Water infiltration dramatically reduced the time required to separate the graphene from the Al2O3 substrate to a few minutes. The graphene was then successfully transferred to a target substrate (SiO2) using the PDMS stamp. Atomic force microscopy and lateral force microscopy was used to confirm the absence of residue on the transferred graphene surface.  相似文献   

9.
We observe that silver atoms deposited by thermal evaporation deposition onto n-layer graphene films condense upon annealing to form nanoparticles with an average diameter and density that is determined by the layer numbers of graphene films. The optical microscopy and Raman spectroscopy were utilized to identify the number of the graphene layers and the SEM (scanning electron microscopy) was used to observe the morphologies of the particles. Systematic analysis revealed that the average sizes of the nanoparticles increased with the number of graphene layers. The density of nanoparticles decreased as the number of graphene layers increased, revealing a large variation in the surface diffusion strength of nanoparticles on the different substrates. The mechanisms of formation of these layer-dependent morphologies of silver nanoparticles are related to the surface free energy and surface diffusion of the n-layer graphenes.  相似文献   

10.
We demonstrate that graphene-based transparent and conductive thin films (GTCFs), fabricated by thermal reduction of graphite oxide, have very similar electronic and structural properties as highly oriented pyrolytic graphite (HOPG). Electron spectroscopy results suggest that the GTCFs are also semi-metallic and that the individual graphene sheets of the film are predominantly oriented parallel to the substrate plane. These films may therefore be considered as a technologically relevant analogue to HOPG electrodes, which cannot be easily processed into thin films.  相似文献   

11.
Scanning tunneling microscopy (STM) was used to study the surface structures of dry-prepared and di-chloroethane-treated HOPG samples. Both triangular and honeycomb structures were simultaneously observed with the same tip at room temperature around a strand (grain boundary) on the HOPG surface. This observation did not support the tip effect in STM imaging explanation for HOPG in literature. A general layer-sliding model was utilized to explain the experimental results: sliding of the HOPG topmost layer was used to explain the origins of the triangular and honeycomb structures, and molecule intercalation into inter-layer spacing between the first and second layers of HOPG induced inhomogeneous deformation of the HOPG topmost layer that accordingly generated the Moiré patterns of the HOPG sample in di-chloroethane.  相似文献   

12.
In this paper, a composite of reduced graphene oxide decorated by Co3O4 hollow spheres (Co3O4/RGO composite) has been synthesized by a one-pot solvothermal method. The samples are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR), Raman spectra and so on. The results demonstrate that the Co3O4 hollow spheres with good purity and homogenous size are absorbed onto the reduced graphene oxide sheets as spacers to prevent the aggregation of the graphene oxide sheets. Furthermore, the well electrochemical properties demonstrate that the Co3O4/RGO composite might have potential applications as electrode materials for supercapacitors.  相似文献   

13.
This work presented a hybrid architecture of graphene oxide (GO)/ZnO nanorods (ZNs) with ZNs attached parallel onto GO sheets. ZNs were synthesized by refluxing zinc acetate dehydrate in methanol solution under basic conditions followed by surface modification of 3-aminopropyl triethoxysilane (ATS), and then the preformed ZNs were attached onto GO sheets by reaction of the amino groups on the outer wall of ZNs with the carboxyl groups on the GO surface. Transmission electron microscopy (TEM) image of the as-prepared hybrid reveals the morphology of the architecture of GO/ZNs hybrid. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) ultraviolet-visible (UV-vis) and fluorescence spectroscopy were also performed to characterize the structure and properties of the GO/ZNs hybrid. It was shown that ZNs maintained their initial morphology and crystallinity in the hybrid and the luminescence quenching of yellow-green emission of ZNs confirmed the electron transfer from excited ZnO to GO sheets.  相似文献   

14.
Owing to its unique physical and chemical properties, graphene has attracted tremendous attention in the preparation of graphene-based composites for various applications. In this study, two different strategies have been developed to load zinc oxide (ZnO) nanorods onto reduced graphene oxide (RGO) sheets, i.e., in situ growth and a self-assembly approach. The microstructure and morphology of the synthesized RGO/ZnO nanocomposites was investigated by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM) and Brunauer–Emmett–Teller (BET) measurements. Fluorescence emission spectra (PL) of RGO/ZnO composites were performed to attribute quality of combination between RGO and ZnO. Significantly enhanced photocatalytic activity of RGO/ZnO nanocomposites in comparison to bare ZnO nanoparticles was revealed by the degradation of methylene blue under irradiation, which can be attributed to the inhibition of electron–hole pair recombination and enhanced adsorption due to the presence of RGO sheets.  相似文献   

15.
利用扫描隧道显微镜研究石墨表面的大尺度周期性图样.研究结果表明,莫尔图起源于石墨深层的缺陷,实验结果与理论完全吻合,并且第一次在实验上证明了纳米波可以穿透多层石墨而没有明显衰减.  相似文献   

16.
The morphology, electronic structure, and optical properties of self-assembled silicon nanostructures grown on the surface of Highly Oriented Pyrolytic Graphite (HOPG) by molecular beam epitaxy were studied by ultra high vacuum (UHV) scanning tunneling microscopy (STM) and X-ray photoemission spectroscopy (XPS) in situ, and by Raman spectroscopy ex situ. At coverages of less than 1 monolayer (ML), the formation of monolayered silicon nanoislands with an atomic structure similar to that of graphene was observed.  相似文献   

17.
Graphene dispersions in water are highly desirable for a range of applications such as biomedicines, separation membranes, coatings, inkjet printing and more. Recent novel research has been focussed on developing a green approach for scalable production of graphene. However, one important parameter, which is often neglected is the bulk temperature of the processing liquid. This paper follows our earlier work where optimal sono-exfoliation parameters of graphite in aqueous solutions were determined based on the measured acoustic pressure fields at various temperatures and input powers. Here, we take the next step forward and demonstrate using systematic characterisation techniques and acoustic pressure measurements that sonication-assisted liquid phase exfoliation (LPE) of graphite powder can indeed produce high quality few layer graphene flakes in pure water at a specific temperature, i.e. 40 °C, and at an optimised input generator power of 50%, within 2-h of processing. UV–vis analysis also revealed that the exfoliation, stability and uniformity of dispersions were improved with increasing temperature. We further confirmed the successful exfoliation of graphene sheets with minimal level of defects in the optimized sample with the help of Raman microscopy and transmission electron microscopy. This study demonstrated that understanding and controlling processing temperature is one of the key parameters for graphene exfoliation in water which offers a potential pathway for its large-scale production.  相似文献   

18.
Y. H. Ding  W. Xie  P. Zhang 《Ionics》2016,22(7):1021-1026
LiFePO4/graphene composites have been prepared by using tailoring graphene oxide (GO) nanosheets as precursors. The structure and electrochemical properties of the composites were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), Raman microscopy, and a variety of electrochemical testing techniques. The decrease in graphene size reduces the contact resistance between activated materials, and enhances the lithium-ion transport in LiFePO4/graphene composites. With low weight fractions of small-size graphene sheets, the composites show better electrochemical performance than those with large size graphene sheets.  相似文献   

19.
The morphology, electronic structure, and optical properties of self-assembled silicon nanostructures grown on the surface of highly oriented pyrolitic graphite (HOPG) by molecular beam epitaxy have been studied by ultra-high-vacuum scanning tunneling microscopy and X-ray photoemission spectroscopy in situ, as well as by Raman spectroscopy ex situ. At a coverage of less than one monolayer, formation of monolayer silicon nanoislands with an atomic structure similar to that of graphene has been observed.  相似文献   

20.
Dry etching of {0 0 0 1} basal planes of highly oriented pyrolytic graphite (HOPG) using active nitridation by nitrogen atoms was investigated at low pressures and high temperatures. The etching process produces channels at grain boundaries and pits whose shapes depend on the reaction temperature. For temperatures below 600 °C, the majority of pits are nearly circular, with a small fraction of hexagonal pits with rounded edges. For temperatures above 600 °C, the pits are almost exclusively hexagonal with straight edges. The Raman spectra of samples etched at 1000 °C show the D mode near 1360 cm−1, which is absent in pristine HOPG. For deep hexagonal pits that penetrate many graphene layers, neither the surface number density of pits nor the width of pit size distribution changes substantially with the nitridation time, suggesting that these pits are initiated at a fixed number of extended defects intersecting {0 0 0 1} planes. Shallow pits that penetrate 1-2 graphene layers have a wide size distribution, which suggests that these pits are initiated on pristine graphene surfaces from lattice vacancies continually formed by N atoms. A similar wide size distribution of shallow hexagonal pits is observed in an n-layer graphene sample after N-atom etching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号