首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
通过测定醋酸纤维素(CDA)和聚乙烯基吡咯烷酮(PVP)共混物溶液的绝对粘度和特性粘数,发现CDA和PVP分子链段间有缔合现象,用富里哀变换红光谱(FTIR)研究了共混物的吸收光谱,发现共混物中CDA的羟基吸收峰和PVP的羰基吸收峰均向低频方向迁移,证明了CDA的羟基和PVP的羧基之间有氢键形成,研究结果表明CDA和PVP的相容性及其特殊相互作用来源于不同分子链段间的氢键相互作用。  相似文献   

2.
聚氯乙烯/线性低密度聚乙烯共混体系的相容性   总被引:5,自引:0,他引:5  
用动态力学分析(DMA)和傅利叶变换红外光谱(FTIR)研究了氢化聚丁二烯-b-聚甲基丙烯酸甲酯(HPBD-b-PMMA)共聚物增容剂对聚氯乙烯(PVC)与线性低密度聚乙烯(LLDPE)共混体系的增容作用.增容剂使共混物中两相的玻璃化温度发生变化,说明其相容性增加.FTIR的结果表明,增容剂中羰基与PVC的α氢形成氢键,使CO,H─C及C─Cl的振动频率变化,峰形加宽.  相似文献   

3.
向聚苯乙烯(PS)中引入磺酸基团可以有效地改善PS与一种热致液晶聚合物(LCP)之间的相容性.用溶液共混的方法制备了PS和磺化聚苯乙烯(HSPS)与LCP的共混物.用FTIR以及红外光谱的合成技术对LCP共混体系进行了表征.共混物中组分聚合物特征吸收的位置和谱图的形状表明在LCP与PS分子间没有相互作用发生,而在LCP与HSPS分子间则存在较强的相互作用.谱图差减技术确认了LCP分子中CO与CO基团和HSPS中的磺酸基团参与了相互作用,使得这些基团的特征吸收发生了偏移.  相似文献   

4.
潘雁  黄玉惠 《应用化学》1997,14(2):53-56
用DSC、DMA研究了羧化聚苯醚(CPPO)/聚(苯乙烯-乙烯吡啶)(PSVP)共混体系的相容性,结果表明,与CPPO/PS体系相比,乙烯吡啶基的引入大大提高了共混相容性.这主要是由于CPPO中的羧基与PSVP中的吡啶基之间通过质子转移形成的正负离子间的相互作用,推动了两组分分子的均匀混合.  相似文献   

5.
嵌段共聚物PI-b-PMMA和不同羟基含量的改性聚苯乙烯PS(OH)组成的共混物因PM-MA嵌段和PS(OH)间的玻璃化转变相当接近而不能用通常的DSC法判别其相容性。通过共混物的焓弛豫,得到相容性明确的DSC判据,且与电镜观察结果一致。共混物中的Tg增宽效应可通过江明等提出的链密度梯度模型解释。  相似文献   

6.
甲基丙烯酸甲酯 甲基丙烯酸共聚物(P(MMA MAA))与低分子量或高分子量梯形聚苯基硅倍半氧烷(PPSQ)的共混物经原位聚合法制成.用光学透明法、荧光光谱、DSC等技术研究了该共混体系的相容性及组分间的相互作用及结构转变.结果表明,当PPSQ含量较小时,由于PPSQ与P(MMA MAA)间存在着较强的氢键作用,该共混体系在一定配比下相容,且低分子量PPSQ与P(MMA MAA)间的相容性较好.当PPSQ的含量≤1%时,PPSQ的加入对该共混物的Tg影响不大,但其Tf随PPSQ含量增加而增大.此外,还测试了P(MMA MAA)/PPSQ原位共混物的硬度及冲击强度.  相似文献   

7.
嵌段共聚物PI-b-PMMA和不同羟基含量的改性聚苯乙烯PS(OH)组成的共混物因PM-MA嵌段和PS(OH)的玻璃化转变相当接近而不能用通常的DSC法判别其相容性,通过共混物的焓弛豫,得到相容性明确的DSC判据,且与电镜观察结果一致,共混物的Tg增宽效应可通过江明等提出的链密度梯度模型解释。  相似文献   

8.
用傅立叶红外光谱(FTIR)中差示光谱技术研究了具有特殊相行为的羧化聚苯醚(CPPO)和聚苯乙烯(PS)共混体系特征红外吸收谱带随相区的转变而发生的变化.发现当核化度为8.0mol%时,CPPO/PS共混体系的红外特征吸收峰的频率位移速率随温度的变化与该体系的特殊相行为(即同时具有UCST和LCST)有相互对应关系.研究了随温度变化,共混体系中分子间特殊相互作用的变化.探讨了此共混体系相容和相分离的机理.  相似文献   

9.
通过动态光散射、粘度和透光率测定,研究了聚(丙烯酰胺 丙烯酸)[P(AM AA)]/聚(丙烯酰胺 二甲基二烯丙基氯化铵)[P(AM DMDAAC)]聚电解质复合溶液的结构和性能.结果表明,P(AM AA)与P(AM DMDAAC)复合比、溶液浓度和氯化钠用量影响溶液中复合物的构象和流体力学半径.P(AM AA)与P(AM DMDAAC)分子链间适度的库仑相互作用,可形成均相P(AM AA)/P(AM DMDAAC)聚电解质复合溶液,复合物具有较伸展的构象和较大的流体力学半径,因而溶液粘度较高.P(AM AA)与P(AM DMDAAC)分子链间过强的库仑相互作用或小分子电解质的屏蔽作用,可使复合物构象卷曲,结构紧缩,流体力学半径减小,甚至产生相分离,导致溶液粘度降低.  相似文献   

10.
PBT/PET共混体系的协同效应   总被引:1,自引:0,他引:1  
PBT、PET具有良好相容性,且两种聚合物分子链间存在相互作用,它们的共混体系在熔体降温结晶过程中以及溶液中均表现出协同效应。虽然PBT、PET在共混体系中各自形成晶区,但熔体降温结果过程中只能观察到一个结晶放热峰,当PBT/PET共混物中两组份分子链段数目相近时,熔体降温结晶峰温较低,峰形变宽,共混体系的结晶程度降低在溶液中两组份分子链段数目相近时,共混物特性粘度(η)值最大,分子链的均方根末端  相似文献   

11.
The anti-tack action of polyvinylpyrrolidone (PVP) on hydroxypropylmethylcellulose (HPMC) solution was elucidated using a probe test method. The influence of PVP of varying molecular weights at various PVP concentrations and solution temperatures on the tackiness of HPMC solution was studied. The viscosity, surface tension, cloud point and solution spectroscopy of HPMC solutions and glass transition temperature of HPMC films, with and without PVP, were investigated. The tackiness of HPMC solutions in response to the addition of PVP, at different concentrations of HPMC and using HPMC with varying contents of hydroxypropyl/methoxyl substitution, was also evaluated. PVP is a commonly used binder and adhesive. However, it reduced the tack of the HPMC solution when used at low concentrations, without affecting the state of hydration of HPMC. Lower molecular weight PVP was more effective as an anti-tack agent owing to suitable hydrodynamic size to intersperse among the HPMC chains. The degree of reduction in tack values was more pronounced for HPMC that showed a greater extent of interaction between polymer chains such as when high concentration of HPMC or low solution temperature was employed. This indicated that the tack reduction property of PVP relied on its ability to interact with the HPMC chains. The profile of reduction in tack values was affected by the contents of HPMC substitution and was a result of net reduction in the extent of hydrogen bonding between HPMC chains. It was significantly correlated to the changes of viscosity and surface tension of the HPMC solutions but not to the glass transition temperatures of the polymers prepared as solid films. The results suggested that the anti-tack action of PVP was attributed to its ability to interact with HPMC chains in the aqueous medium and consequently to reduce the extent of HPMC-HPMC bonding.  相似文献   

12.
通过粘度、紫外光谱、红外光谱和DSC谱的测定,探讨了PVP/HEC分子间的缔合机理.结果表明,PvP/HEC复合体系相对于单一体系产生了粘度的负协同效应,NaCl的加入使单一体系和复合体系的粘度均下降;在紫外可见吸收光谱中,PVP/HEC复合体系的最大吸收波长λmax相对于PVP、HEC各自的λmax都发生红移;PVP/HEC复合物的红外光谱在2370 cm-1出现新的吸收峰;DSC谱中复合物的峰温高于简单混合物,而其焓变低于简单混合物,这一切均证明HEC与PVP之间未发生疏水缔合,而是HEC的羟基与PVP的羰基之间通过氢键缔合成复合物,复合物的分子链排列较为紧密.  相似文献   

13.
用DSC,DMTA研究了醋酸纤维素(CDA),聚乙烯基吮咯烷酮(PVP)及CDA/PVP共混体系的玻璃化转变行为.用精密量热法测定了该体系的混合热焓.结果表明:共混体系只存在一个玻璃化转变温度(Tg),其值随共混组成的变化而改变;共混体系的混合热焓为负值,其绝对值随组成中PVP含量的增加而减少.力学性能研究表明,共混体系具有协同效应.上述试验结果证明,CDA和PVP是一对相容性高聚物.  相似文献   

14.
 用DSC,DMTA研究了醋酸纤维素(CDA),聚乙烯基吮咯烷酮(PVP)及CDA/PVP共混体系的玻璃化转变行为.用精密量热法测定了该体系的混合热焓.结果表明:共混体系只存在一个玻璃化转变温度(Tg),其值随共混组成的变化而改变;共混体系的混合热焓为负值,其绝对值随组成中PVP含量的增加而减少.力学性能研究表明,共混体系具有协同效应.上述试验结果证明,CDA和PVP是一对相容性高聚物.  相似文献   

15.
Dielectric studies of poly(vinyl pyrrolidone)/ethyl alcohol (PVP–E) binary mixtures with concentration variations were carried out in the frequency range of 10 MHz to 10 GHz by time domain reflectometry at 15, 25, 35, and 45 °C. One relaxation process, corresponding to ethyl alcohol molecules in the poly(vinyl pyrrolidone) (PVP) matrix, was observed in this frequency range for all the mixtures. The static dielectric constant of the PVP–E mixtures decreased linearly with an increase in the weight fraction of PVP. The observed anomalous increase in the value of the relaxation time (τ) of these mixtures was interpreted by the consideration of the variation in the local structure of self‐associated ethyl alcohol molecules and also the PVP behavior as a geometric constraint for the rotational motion of ethyl alcohol molecules. Furthermore, the τ values of these mixtures were independent of the viscosity. The energy parameters for the dielectric relaxation process (the free energy, enthalpy, and entropy of activation for the dipolar orientation) were determined to confirm the transient behavior of the heterogeneous species due to the breaking and re‐forming of hydrogen bonds with the internal rotation of ? OH groups in the ordered structure of the PVP–E mixtures. On the basis of the evaluated dielectric parameters, the formation of supermolecular structure in the PVP–E mixtures in dynamic equilibrium was sketched and examined by the consideration of the hydrogen bonding between the terminal hydroxyl groups of self‐associated ethyl alcohol flexible chains and the carbonyl groups of monomer units of PVP coiled chains. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1134–1143, 2005  相似文献   

16.
Wang Y  Liang D  Hao J  Fang D  Chu B 《Electrophoresis》2002,23(10):1460-1466
A noncross-linked interpenetrating polymer network (IPN), consisting of poly(N,N-dimethylacrylamide) (PDMA) and polyvinylpyrrolidone (PVP, weight-average molecular weight M(w) = 1 x 10(6) g/mol) was synthesized by polymerizing N,N-dimethylacrylamide (DMA) monomers directly in PVP buffer solution and tested as a separation medium for double-stranded (ds)DNA analysis without further purification. Due to the incompatibility of PVP and PDMA, a simple solution mixture could incur a microphase separation and showed poor performance on dsDNA separation. However, a dramatic improvement was achieved by the formation of an IPN. We attributed the high sieving ability of IPN as due to an increase in the number of entanglements by the more extended polymer chains. Apparent viscosity studies showed that the IPN had a much higher viscosity than the simple mixture containing the same amount of PDMA and PVP. In 1 x Tris-borate-EDTA (TBE) buffer, the concentration ratio of PDMA and PVP had a great effect on the DNA separation. At optimal conditions, the 22 fragments in pBR322/HaeIII DNA were successfully separated within 15 min, with a resolution of better than 1.0 for 123/124 bp.  相似文献   

17.
The rheological behavior of poly(vinyl pyrrolidone) (PVP)/N,N‐dimethylformamide (DMF) solutions containing metal chlorides (LiCl, CaCl2, and CoCl2) were investigated, and the results showed that the nature of the metal ions and their concentration had an obvious effect on the steady‐state rheological behavior of PVP–DMF solutions with different molecular weights. The apparent viscosity of the PVP–DMF solutions increased with an increasing metal‐ion concentration, and the viscosity increment was dependent on the metal‐ion variety. For a CaCl2‐containing PVP–DMF solution, for example, the critical shear rate at the onset of shear thinning became smaller with increasing CaCl2 concentration. It was believed that multiple interactions among metal ions, carbonyl groups of PVP, and amide groups in DMF determined the solution properties of these complex fluids; therefore, 13C NMR spectroscopy was used to detect the interactions in systems of PVP–CaCl2–DMF and PVP–LiCl–DMF solutions. NMR data showed that there were obvious interactions between the metal ions and the carbonyl groups of the PVP segments in the DMF solutions. Furthermore, IR spectra of the PVP/metal chloride composites demonstrated that the interaction between the metal ions and carbonyl groups in the PVP unit occurred and that the PVP chain underwent conformational variations with the metal‐ion concentration. DSC results indicated that the glass transition temperatures of the PVP/metal chloride composites increased with the addition of metal ions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1589–1598, 2007  相似文献   

18.
A molecular dynamics simulation was performed to investigate the aggregates of mixing and the interaction between different polymers in aqueous solution. These polymers include partially hydrolyzed polyacryamide (HPAM), hydroxyethylcellulose (HEC) and polyvinylpyrrolidone (PVP). The structures of mixed aggregates were analyzed from the dihedral angle distribution of: (1) pure HPAM; (2) HPAM in aqueous solution; (3) HPAM with small segments of PVP or HEC in aqueous solution. At the same time, the simulated IR spectra and the calculated interaction parameters were used to distinguish the different interactions between HPAM and PVP or HEC. In order to confirm the validity of the simulated predictions, experimental IR spectra of polymer systems were made, and the specific viscosity of the HPAM and PVP or HEC system was measured using capillary viscometry. It can be seen from the viscosity measurements that the viscosity of the HPAM/PVP system in aqueous solution decreases linearly with an increase in concentration of PVP, whereas a maximum viscosity value appears with the increase in concentration of HEC in the HPAM/HEC system. The conclusion was drawn that the interaction between HPAM and HEC is stronger than the one between HPAM and PVP, and that molecular simulation can be considered as an adjunct to experiments and can provide otherwise inaccessible (or, not easily accessible) microscopic information that experimentalists can use.  相似文献   

19.
The structure of polymer complexes stabilized through hydrogen bonds can be much influenced by the presence of nonactive groups (structure defects) on the polymer chains. In this paper two very simple homopolymer/copolymer systems are studied: the homopolymer is a polybase, polyoxyethylene (PEO) or polyvinylpyrrolidone (PVP), and the copolymer a partially neutralized poly(acrylic acid) (PAA). The acrylate groups on PAA chain behave as structure defects. Viscometry provides information about macroscopic structure of polymer complex in solution while fluorescence polarization is especially adapted for the study of the local mobility of polymer chains. Two kinds of structure are found: the first one is compact and implies a low viscosity of the mixture, eventually precipitation occurs, the second one is a highly branched structure, close to a gel, which leads to a very high increase in viscosity. For instance, the viscosity of the mixture may be several hundred times higher than the sum of the viscosities of the two individual polymer solutions. Such mixtures are especially adapted to be used like thickening agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号