首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Polyamide 6/ZnO nanocomposites (noted as PA6/ZnO) were prepared by an in situ co‐producing method, during which Zn2(OH)2CO3 decomposed into nano‐ZnO in the process of the opening‐ring polymerization of caprolactam at high temperature. Transmission electron microscopy, X‐ray diffraction, thermogravimetric analysis, and differential scanning calorimetry were used to analyze the size and dispersive properties of nano‐ZnO, the crystallization and melting properties, the thermal properties, and crystal structure of PA6/ZnO composite, respectively. The results showed that the nano‐ZnO derived from Zn2(OH)2CO3 via in situ polymerization of PA6‐ZnO was uniformly dispersed in PA6 matrix. However, the overall nano‐ZnO crystallization rate and crystal size in the PA6 matrix were hindered by the bulky PA6 molecular chains. The mechanical properties were evaluated using universal tensile and impact testing instruments. The results revealed that PA6/ZnO composite with 0.2% nano‐ZnO content possessed excellent tensile strength, enhanced by 75% in comparison with the pure PA6. The nano‐ZnO had little influence on the impact strength of PA6. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 165–170  相似文献   

2.
《化学:亚洲杂志》2017,12(14):1736-1748
Five centrosymmetric and one dipolar pyrrolo[3,2‐b ]pyrroles, possessing either two or one strongly electron‐withdrawing nitro group have been synthesized in a straightforward manner from simple building blocks. For the symmetric compounds, the nitroaryl groups induced spontaneous breaking of inversion symmetry in the excited state, thereby leading to large solvatofluorochromism. To study the origin of this effect, the series employed peripheral structural motifs that control the degree of conjugation via altering of dihedral angle between the 4‐nitrophenyl moiety and the electron‐rich core. We observed that for compounds with a larger dihedral angle, the fluorescence quantum yield decreased quickly when exposed to even moderately polar solvents. Reducing the dihedral angle (i.e., placing the nitrobenzene moiety in the same plane as the rest of the molecule) moderated the dependence on solvent polarity so that the dye exhibited significant emission, even in THF. To investigate at what stage the symmetry breaking occurs, we measured two‐photon absorption (2PA) spectra and 2PA cross‐sections (σ2PA) for all six compounds. The 2PA transition profile of the dipolar pyrrolo[3,2‐b ]pyrrole, followed the corresponding one‐photon absorption (1PA) spectrum, which provided an estimate of the change of the permanent electric dipole upon transition, ≈18 D. The nominally symmetric compounds displayed an allowed 2PA transition in the wavelength range of 700–900 nm. The expansion via a triple bond resulted in the largest peak value, σ2PA=770 GM, whereas altering the dihedral angle had no effect other than reducing the peak value two‐ or even three‐fold. In the S 0S 1 transition region, the symmetric structures also showed a partial overlap between 2PA and 1PA transitions in the long‐wavelength wing of the band, from which a tentative, relatively small dipole moment change, 2–7 D, was deduced, thus suggesting that some small symmetry breaking may be possible in the ground state, even before major symmetry breaking occurs in the excited state.  相似文献   

3.
Organic montmorillonite (OMMT) nano‐platelets were exfoliated and well dispersed in fully bio‐based polyamide 11/Poly(vinyl alcohol) (PA11/PVA) blends. Significantly lower oxygen permeation rates (OTR) were detected for the PA1172.5PVA27.5OMMTx films than those of PA11 and PA1172.5PVA27.5 films. An extremely low OTR of 0.218 cm3/m2·day·atm was found for PA1172.5PVA27.5OMMT1 film modified with 1 PHR optimum concentration of well dispersed OMMT nano‐platelets. Similarly, the free volume characteristics evaluated for PA1172.5PVA27.5OMMTx film series reduced to a minimum as the OMMT concentration reached the optimum value. As revealed by dynamic mechanical and differential scanning calorimetric analyses of PA1172.5PVA27.5OMMTx film series, all dynamic glass transition temperature (Tg), melting temperature (Tm) and percentage crystallinity (Wc) values of PA1172.5PVA27.5OMMTx films were noticeably higher than those of PA1172.5PVA27.5 film without addition of OMMT. In fact, Tgs, Tms and Wcs evaluated for PA1172.5PVA27.5OMMTx films increased to a maximum, as their OMMT reached the optimum concentration. The considerably enhanced oxygen barrier resistance found for PA1172.5PVA27.5OMMTx films was ascribed to the considerably reduced free volume characteristics and much longer permeation path caused by impermeably OMMT nano‐platelets well dispersed in PA1172.5PVA27.5OMMTx films.  相似文献   

4.
A novel and convenient synthesis of microspheres was attained by molecular self-assembly of random copolymers in supercritical carbon dioxide. Poly{2-(perfluorooctyl)ethyl acrylate-ran-2-(dimethylamino)ethyl acrylate} random copolymers (P[POA-r-DAA]), with 7:3, 8:2, and 9:1 as the molar ratios of 2-(perfluorooctyl)ethyl acrylate (POA)/2-(dimethylamino)ethyl acrylate (DAA), were soluble in supercritical CO2 and had their cloud points at about 75 bar higher than the critical pressure of CO2. The CO2 density at the cloud points decreased with an increase in temperature. Although the copolymers made a slight difference in the cloud point in the absence of perfluoroazelaic acid (PA), they made a marked difference in the presence of PA. The copolymer with a lower DAA content had a cloud point at lower CO2 density. The scanning electron microscopy observation demonstrated that the copolymers produced microspheres in the presence of PA at 0.5 as PA/DAA in the heterogeneous state below the cloud points. The microspheres were unstable to pressure and changed to unspecific forms as a result of increasing the CO2 pressure, although the microspheres were stable to temperature. The POA/DAA ratio in the copolymer had effect not only on the cloud point but also on the size of the microspheres. The copolymer with a lower DAA content formed smaller microspheres.  相似文献   

5.
Superheated water (shH2O) is investigated as a process aid in conventional aliphatic polyamide (PA) systems. The polymers investigated include PA 6 (PA6), PA 6,6 (PA66), PA 6,12 (PA612), and PA 12 (PA12). It is shown that the PA melting and crystallization temperatures are significantly reduced when exposed to shH2O. For example, the melting temperature of PA6 is depressed from 206 to 153 °C in the presence of shH2O. A relationship between amide group density and thermal transition temperature reduction is observed. Processing these materials in shH2O has led to a variety of materials ranging from low‐density foams to higher density locally anisotropic foamed morphologies. In situ observations of PAs melting in the presence of shH2O are performed using a specially designed reactor. Results from these experiments are used to estimate the diffusion coefficient of shH2O in PA6. Finally, low‐temperature extrusion is performed with PA6 and shH2O at temperatures as low as 180 °C and mixture viscosity is estimated. A 20‐fold depression in the melt viscosity of PA6 is observed at 240 °C with shH2O. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 803–813  相似文献   

6.
The functional polyimide (OMe)2TPPA‐6FPI ( PI ) and the polyamide (OMe)2TPPA‐6FPA ( PA ) consisting of electron‐donating N,N′‐bis(4‐aminophenyl)‐N,N′‐di(4‐methoxylphenyl)1,4‐phenylenediamine [(OMe)2TPPA‐diamine] for memory application were prepared in this study. These polyimide and polyamide memory devices were fabricated with the sandwich configuration of indium tin oxide (ITO)/polymer/Al, and could be switched from the initial low‐conductivity (OFF) state to the high‐conductivity (ON) state with high ON/OFF current ratios of 107 and 109, respectively. PI exhibited dynamic random access memory (DRAM) performance, whereas PA showed static random access memory (SRAM) behavior. To get more insight into the memory behaviors of these two different types of polymer memory devices, molecular simulation on the basic unit was carried out. Furthermore, the differences of highest occupied molecular orbital (HOMO) energy level, lowest unoccupied molecular orbital (LUMO) charge density isosurfaces, dipole moment, and linkage conformation between PI and PA were found to affect the volatile memory behavior. Both polymer memory devices revealed excellent stability with long operation time of 104 s at continuous applied voltage of ‐2 V. The effect of polymer thickness on the volatile memory behavior of PA was also investigated in this study. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
During gelation, the time dependence of the apparent viscosity has been used to analyze the kinetics of the gelation of polyacrylamide (PA) sol with chromium (III) ions. The investigations have stablished the following facts: Before gelation the relation between the viscosity, η, of Cr(III)-PA sol and the PA concentration is η = f([PA]) = 2.36×1015 [PA]3.15 and the rate equation of gelation in the steady-state stage during gelation is expressed as Vn = ks f([PA]) [PA]2 [Cr(III)]2.  相似文献   

8.
Azo‐containing materials have been proven to possess second‐order nonlinear optical (NLO) properties, but their third‐order NLO properties, which involves two‐photon absorption (2PA), has rarely been reported. In this study, we demonstrate a significant 2PA behavior of the novel azo chromophore incorporated with bilateral diphenylaminofluorenes (DPAFs) as a π framework. The electron‐donating DPAF moieties cause a redshifted π–π* absorption band centered at 470 nm, thus allowing efficient blue‐light‐induced trans‐to‐cis photoisomerization with a rate constant of 2.04×10?1 min?1 at the photostationary state (PSS). The open‐aperture Z‐scan technique that adopted a femtosecond (fs) pulse laser as excitation source shows an appreciably higher 2PA cross‐section for the fluorene‐derived azo chromophore than that for common azobenzene dyes at near‐infrared wavelength (λex=800 nm). Furthermore, the fs 2PA response is quite uniform regardless of the molecular geometry. On the basis of the computational modeling, the intramolecular charge‐transfer (ICT) process from peripheral diphenylamines to the central azo group through a fluorene π bridge is crucial to this remarkable 2PA behavior.  相似文献   

9.
End‐functionalized poly(phenylacetylene)s were synthesized by the polymerization of phenylacetylene (PA) using the well‐defined palladium catalysts represented as [(dppf)PdBr(R)] {dppf = 1,1′‐bis(diphenylphosphino)ferrocene}. The Pd catalysts having a series of R groups such as o‐tolyl, mesityl, C(Ph)?CPh2, C6H4o‐CH2OH, C6H4p‐CN, and C6H4p‐NO2 in conjunction with silver triflate polymerized PA to give end‐functionalized poly(PA)s bearing the corresponding R groups in high yields. The results of IR and NMR spectroscopies and MALDI‐TOF mass analyses proved the introduction of these R groups at one end of each polymer chain. The poly(PA) bearing a hydroxy end group was applied as a macroinitiator to the synthesis of a block copolymer composed of poly(PA) and poly(β‐propiolactone) moieties. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
In view of immense importance of silylenes and the fact that their properties undergo significant changes on substitution with halogens, here, we have used B3LYP/6-311++G** level of theory to access the effects of 1–4 halogens (X = F, Cl, Br, and I) on four unprecedented sets of cyclopentasilylene-2,4-dienes; with the following formulas: SiC4H3X ( 1 X ), SiC4H2X2 ( 2 X ), SiC4HX3 ( 3 X ), and SiC4X4 ( 4 X ). In going down from F to I, the singlet (s)-triplet (t) energy gap (ΔEs-t, a possible indication of stability), and band gap (ΔEH-L) decrease while nucleophilicity (N), chemical potential (μ), and proton affinity (PA) increase. The overall order of N, μ, and PA for each X is 2 X > 1 X > 3 X > 4 X . Precedence of 2 X over 1 X is attributed to the symmetric cross conjugation in the former. The highest and lowest N are shown by 2 I and 4 F . The trend of divalent angle () for each X is 4 X > 1 X > 3 X > 2 X . The results show that in going from electron withdrawing groups (EWGs) to electron donating groups (EDGs), the ΔEs-t and ΔEH-L decrease while N, μ, and PA increase. Also, rather high N of our scrutinized silylenes may suggest new promising ligands in organometallic chemistry.  相似文献   

11.
Free radical copolymerization of sulfur dioxide with phenylacetylene (PA) in o-dichlorobenzene was studied in a range of temperatures from 30 to 80oC as a function of total monomer concentration ([SO2] + [PA]). PA content in the copolymers increases with decreasing total monomer concentration and increasing temperature. M w/M n becomes sharper with decreasing the total monomer concentration, but does not depend upon feed compositions which are changed keeping total monomer concentration constant at 2, 4, and 6 mol/L, respectively. These results strongly indicate the existence of depropagation. Thermal decomposition of the copolymers happens more easily than PA homopolymer and the carbon-centered free radicals are detected during the decomposition. Reactivity of ~ CH??(Ph) free radical (~ PA · ) is also discussed.  相似文献   

12.
We report a simple and effective strategy for fabrication of the nanocomposite containing chitosan (CS) and multiwall carbon nanotube (MWNT) coated on a glassy carbon electrode (GCE). The characterization of the modified electrode (CS‐MWNT/GC) was carried out using scanning electron microscopy (SEM) and UV–vis absorption spectroscopy. The electrochemical behavior of CS‐MWNT/GC electrode was investigated and compared with the electrochemical behavior of chitosan modified GC (CS/GC), multiwalled carbon nanotube modified GC (MWNT/GC) and unmodified GC using cyclic voltammetry (CV) and electron impedance spectroscopy (EIS). The chitosan films are electrochemically inactive; similar background charging currents are observed at bare GC. The chitosan films are permeable to anionic Fe(CN)63?/4? (FC) redox couple. Electrochemical parameters, including apparent diffusion coefficient for the Fe(CN)63?/4? redox probe at FC/CS‐MWNT/GC electrode is comparable to values reported for cast chitosan films. This modified electrode also showed electrocatalytic effect for the simultaneous determination of D‐penicillamine (D‐PA) and tryptophan (Trp). The detection limit of 0.9 μM and 4.0 μM for D‐PA and Trp, respectively, makes this nanocomposite very suitable for determination of them with good sensitivity.  相似文献   

13.
Novel carbazole‐containing acetylene monomer, 1‐(3‐ethynyl‐9‐carbazoyl)?4‐(9‐carbazoyl)benzene 1 was synthesized, polymerized, and copolymerized with phenylacetylene ( PA ) using [(nbd)RhCl]2‐Et3N, Rh+(nbd)[η6‐C6H5B(C6H5)3], and WCl6‐Ph4Sn as catalysts. Polymers with number‐average molecular weights ranging from 7800 to 33,200 were obtained in 60%–quantitative yields. The absorption band edge of poly( 1 ‐co‐ PA ) ( 1 :PA = 8:2) was positioned at a wavelength longer than those of 1 and polyvinylcarbazole. Poly( 1 ‐co‐ PA ) ( 1:PA = 8:2) emitted fluorescence with 60% quantum yield. Poly( 1 ‐co‐ PA ) ( 1:PA = 8:2) worked as a hole transport material of an OLED with tris(8‐hydroxyquinoline)aluminum (Alq3) as an emission material. © 2015 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 2015 , 53, 1245–1251  相似文献   

14.
15.
A novel one‐handed helical poly(phenylacetylene) bearing L‐hydroxyproline pendants (poly(PA‐P)) was synthesized as an eco‐friendly polymer‐supported catalyst for asymmetric reactions. The helical poly(PA‐P) catalyzed the asymmetric aldol reactions of cyclohexanone with p‐nitrobenzaldehyde, and showed good recyclability and higher enantiomeric excess (ee) in aqueous medias than that in organic medias. The one‐handed helicity of poly(PA‐P) was clearly affected by the water content in the aqueous media. The helical poly(PA‐P) showed the higher enantioselectivity (ee = 99%) than its monomer PA‐P (ee = 54%) in THF/H2O (H2O vol % = 25.0 vol %). After the one‐handed helical structure of poly(PA‐P) was destroyed by grinding treatment, the ee of the reaction clearly decreased from 99 to 49%. These indicate that the one‐handed helical structure of poly(PA‐P) played an important role in the high enantioselectivity of the asymmetric aldol reactions in the aqueous media. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1024–1031  相似文献   

16.
The effect of various benzenesulfonamide (BSA) plasticizers on the amorphous phase of semicrystalline polydodecamide (PA‐12) has been investigated. MonoBSAs appear as efficient glass‐transition temperature (Tg) depressors because of their miscibility with the host polyamide (PA), low glass transition, and small molecule size. PA‐12's Tg shifts from 50 to about 0 °C at 20 mol % of the most efficient molecules. Comparatively, the more bulky bisBSAs appear to induce less important absolute Tg decreases (30 K at 20 mol %), although these appear as more important when considering the polymer Tg to plasticizer Tg difference. This unexpected observation could be ascribed to both the amide‐sulfonamide interactions and the sterically generated disorder within the polyamide because of the plasticizer molecule's size. Phase‐separation behavior of BSA plasticizers within the host PA has also been investigated. Crystalline phenyl‐SO2NH2, for instance, dephased beyond 20 mol % in PA‐12, forming distinct 1–2 micrometer wide crystalline domains as a result of its high propensity to crystallize upon cooling from the melt. By contrast, slow crystallizing N,N‐dimethylBSA, which lacks any specific interaction for PA‐12, remained nevertheless dispersed at a molecular level (metastable state, no phase separation) when vitrification of the host PA‐12 amorphous phase occurred on cooling. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2208–2218, 2002  相似文献   

17.
This effort reports on novel polylactic acid-derived polyurethane (PU) and polyamide 6,12 (PA6,12)-based blends and graphene-reinforced nanocomposite. PU/PA6,12 (50:50) blend was opted as matrix based on molecular weight and shear stress performance. PU/PA6,12 with 5?wt% graphene (PU/PA6,12/graphene 3) showed improved T0 and Tmax of 515 and 541°C relative to neat blend. PU/PA6,12/graphene 3 also revealed significantly high tensile (53?MPa) and flexural strength (1,711?MPa). For Eschericia coli, Staphylococcus, and Pseudomonas bacterial strains, nanocomposite with higher graphene loading produced significant inhibitory effects. Novel nanocomposites displayed fine antimicrobial and barrier properties against O2 and H2O to be used as a packaging material.  相似文献   

18.
Novel phenylacetylene (PA) monomers, which have o-silylmethyl groups of different bulkinesses, i.e., o-Me3SiCH2PA, o-Et3SiCH2PA, and o-t-BuMe2Si-CH2PA, polymerized with W and Mo catalysts in high yields. The MoCl5-Ph4Sn catalyst achieved the highest weight-average molecular weights (M w 7 × 105 ? 12 × 105), and the M w increased as the ortho-substitutent became bulkier (e.g., Mw of o-t-BuMe2SiCH2PA: 12 × 105). These monomers polymerized in a living fashion by the MoOCl4-n-Bu4Sn-EtOH catalyst. The resulting polymers were soluble in common solvents such as toluene and chloroform. In the UV-visible spectra, a tendency was observed that absorption maxima shifted to longer wavelengths as the substituents became bulkier. Membranes of the polymers were fairly permeable to gases (e.g., oxygen permeability coefficients 30-80 barrers). Though o-(Me3Si)2CHPA also polymerized with W and Mo catalysts, the product polymer was partly insoluble in any solvent. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
The polymerization of (−)‐p‐[(tert‐butylmethylphenyl)silyl]phenylacetylene (t‐BuMePhSi*PA) and (+)‐p‐[{methyl(α‐naphthyl)phenyl}silyl]phenylacetylene (MeNpPhSi*PA) with the [(nbd)RhCl]2 Et3N catalyst yielded polymers with very high molecular weights over 2 × 106 in high yields. The optical rotations of the formed poly(t‐BuMePhSi*PA) and poly(MeNpPhSi*PA) were as high as −356 and −150° (c = 0.11 g/dL in CHCl3), respectively. The circular dichroism (CD) spectrum of poly(t‐BuMePhSi*PA) in CHCl3 exhibited very large molar ellipticities ([θ]) in the UV region: [θ]max = 9.2 × 104 ° · cm2 · dmol−1 at 330 nm and −8.0 × 104 ° · cm2 · dmol−1 at 370 nm. The [θ]max values of poly(MeNpPhSi*PA) were also fairly large: [θ]max = 7.1 × 104 ° · cm2 · dmol−1 at 330 nm and −5.3 × 104 ° · cm2 · dmol−1 at 370 nm. The optical rotations of poly(t‐BuMePhSi*PA) and poly(MeNpPhSi*PA), measured in tetrahydrofuran, chloroform, and toluene solutions, were hardly dependent on temperature in the range 22–65 °C. The CD effects of these polymers hardly changed in the temperature range 28–80 °C, either. These results indicate that the helical structures of these polymers are thermally appreciably stable. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 71–77, 2001  相似文献   

20.
The effect of ~(50)Co γ-radiation on plain polyamide 1010 (PA1010 Ⅰ) and PA1010 containing dif-ferent amount of crosslinking agent (BMI) (PA1010 Ⅱ) both in vacuum and in air at room tempera-ture was investigated with DSC. It was found that the crystallization temperature T_c of crosslinkedsample determined with DSC at constant cooling rate decreased as the radiation dose increased. Thedifference between crystallization temperatures before and after crosslinking (T_(c_o)-T_(c_R) is linearlyrelated to the radiation dose for PA1010I. Based on the Charlesby-Pinner's equation an expressionwas derived S+S~(1/2)=A+B/(T_(c_o)-T_(c_R)) where S is the sol fraction, A and B are constants. Since thereis evidence that T_c is relative to S only and independent of the way of irradiation, the equation is alsoapplicable to the enhanced γ-irradiation crosslinked PA1010 Ⅱ. Therefore, determination of T_cof crosslinked polymer by DSC offers a convenient approach to study quantitatively the random andespecially non-random crosslinking reaction of crystalline polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号