首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
State change, quantum probability, and information gain in the operational phasespace measurement are formulated by means of positive operator-valued measure (POVM) and operation. The properties of the operational POVM and its marginal POVM which yield the quantum probability distributions of the measurement outcomes obtained by the operational phase-space measurement are investigated. The Naimark extension of the operational POVM can be expressed in terms of the relative-position states and the relative-momentum states in the extended Hilbert space. An observable quantity measured in the operational phase-space measurement becomes a fuzzy or unsharp observable. The state change of a physical system caused by the operational phase-space measurement is described by the operation which is obtained explicitly for the position and momentum measurements and for the simultaneous measurement of position and momentum. Using the results, the entropy change of the measured physical system and the information gain in the operational phase-space measurement are investigated. It is found that the average value of the entropy change is equal to the Shannon mutual information extracted from the outcomes exhibited by the measurement apparatus.  相似文献   

2.
《Physics letters. A》1998,249(3):167-179
The information-theoretical properties of a sequence of quantum nondemolition measurements are investigated in detail. It is found that the information gain by quantum nondemolition measurement is equal to the entropy decrease of the measured physical system. Under certain conditions, the complete information about a discrete observable of the physical system can be obtained when a sufficiently large number of measurements are performed.  相似文献   

3.
The entropy of an abstract observable on quantum logic is defined as an informational property of the corresponding sublogic of a quantum logic associated with the physical system. The main properties of such quantity are stated. It is proved that the entropy is completely characterized by the entropies of the corresponding finite resolutions of the unit (experiments). The connection with the entropy of a state is also mentioned.  相似文献   

4.
Modal interpretations of quantum mechanics propose to solve the measurement problem by rejecting the orthodox view that in entangled states of a system which are nontrivial superpositions of an observable's eigenstates, it is meaningless to speak of that observable as having a value or corresponding to a property of the system. Though denying this is reminiscent of how hidden-variable interpreters have challenged orthodox views about superposition, modal interpreters also argue that their proposals avoid any of the objectionable features of physical properties that beset hidden-variable interpretations, like contextualism and nonlocality. Even so, I shall prove that modal interpreters of quantum mechanics are still committed to giving up at least one of the following three conditions characteristic of classical reasoning about physical properties: (1) Properties certain to be found on measuring a system should be counted as intrinsic properties of the system. (2) If two propositions stating the possession of two intrinsic properties by the system are regarded as meaningful, then their conjunction should also correspond to a meaningful proposition about the system possessing a certain intrinsic property; and similarly for disjunction and negation. (3) The intrinsic properties of a composite system should at least include (though need not be exhausted by) the intrinsic properties of its parts. Conditions 1–3 are by no means undeniable. But the onus seems to be on modal interpreters to tell us why rejecting one of these is preferable to an ontology of properties incorporating contextualism and nonlocality.  相似文献   

5.
We present an analysis of Szilard's one-molecule Maxwell's demon, including a detailed entropy accounting, that suggests a general theory of the entropy cost of information. It is shown that the entropy of the demon increases during the expansion step, due to the decoupling of the molecule from the measurement information. It is also shown that there is an entropy symmetry between the measurement and erasure steps, whereby the two steps additivelv share a constant entropy change, but the proportion that occurs during each of the two steps is arbitrary. Therefore the measurement step may be accompanied by an entropy increase, a decrease, or no change at all, and likewise for the erasure step. Generalizing beyond the demon, decorrelation between a physical system and information about that system always causes an entropy increase in the joint system comprised of both the original system and the information. Decorrelation causes a net entropy increase in the universe unless, as in the Szilard demon, the information is used to decrease entropy elsewhere before the correlation is lost. Thus, information is thermodynamically costly precisely to the extent that it is not used to obtain work from the measured system.  相似文献   

6.
郑映鸿  陈童  王平  常哲 《物理学报》2007,56(11):6199-6203
对几何相位的伽利略变换性质结果表明:通常实验中所测量体系的几何相位的确是伽利略不变的.但一般量子体系的几何相位不具有伽利略不变性.还仔细考察了几何相位在伽利略boost作用下变化的物理起源.文章最后通过对假想实验的分析,进一步证明几何相位对参考系的依赖并不意味着相应物理可观测量的非伽利略协变性.  相似文献   

7.
8.
Predictions for measurement outcomes in physical theories are usually computed by combining two distinct notions: a state, describing the physical system, and an observable, describing the measurement which is performed. In quantum theory, however, both notions are in some sense identical: outcome probabilities are given by the overlap between two state vectors--quantum theory is self-dual. In this Letter, we show that this notion of self-duality can be understood from a dynamical point of view. We prove that self-duality follows from a computational primitive called bit symmetry: every logical bit can be mapped to any other logical bit by a reversible transformation. Specifically, we consider probabilistic theories more general than quantum theory, and prove that every bit-symmetric theory must necessarily be self-dual. We also show that bit symmetry yields stronger restrictions on the set of allowed bipartite states than the no-signalling principle alone, suggesting reversible time evolution as a possible reason for limitations of nonlocality.  相似文献   

9.
A complete measurement of a quantum observable (POVM) is a measurement of the maximally refined version of the POVM. Complete measurements give information on multiplicities of measurement outcomes and can be used as state preparation procedures. Moreover, any observable can be measured completely. In this Letter, we show that a complete measurement breaks entanglement completely between the system, ancilla and their environment. Finally, consequences for the quantum Zeno effect and complete position measurements are discussed.  相似文献   

10.
We examine the inference of quantum density operators from incomplete information by means of the maximization of general nonadditive entropic forms. Extended thermodynamic relations are given. When applied to a bipartite spin 1 / 2 system, the formalism allows one to avoid fake entanglement for data based on the Bell-Clauser-Horne-Shimony-Holt observable, and, in general, on any set of Bell constraints. Particular results obtained with the Tsallis entropy and with an introduced exponential entropic form are also discussed.  相似文献   

11.
From the philosophical viewpoint, two interpretations of the quantum measurement process are possible: According to the first interpretation, when we measure an observable, the measured system moves into one of the eigenstates of this observable (“the wave function collapses”); in other words, the universe “branches” by itself, due to the very measurement procedure, even if we do not use the result of the measurement. According to the second interpretation, the system simply moves into amixture of eigenstates, and the actual “branching” occurs only when anobserver reads the measurement results. According to the first interpretation, a mixture is a purely mathematical construction, and in the real physical world, a mixture actually means that the system is in one of the “component” states. In this paper, we analyze this difference from the viewpoint ofalgorithmic information theory; as a result of this analysis, we argue that onlypure quantum states are fundamental, while mixtures are simply useful mathematical constructions.  相似文献   

12.
杨锦涛  曹俊鹏  杨文力 《中国物理 B》2022,31(1):10314-010314
We study the non-Markovian dynamics of an open quantum system with machine learning.The observable physical quantities and their evolutions are generated by using the neural network.After the pre-training is completed,we fix the weights in the subsequent processes thus do not need the further gradient feedback.We find that the dynamical properties of physical quantities obtained by the dynamical learning are better than those obtained by the learning of Hamiltonian and time evolution operator.The dynamical learning can be applied to other quantum many-body systems,non-equilibrium statistics and random processes.  相似文献   

13.
We propose the study of quantum games from the point of view of quantum information theory and statistical mechanics. Every game can be described by a density operator, the von Neumann entropy and the quantum replicator dynamics. There exists a strong relationship between game theories, information theories and statistical physics. The density operator and entropy are the bonds between these theories. The analysis we propose is based on the properties of entropy, the amount of information that a player can obtain about his opponent and a maximum or minimum entropy criterion. The natural trend of a physical system is to its maximum entropy state. The minimum entropy state is a characteristic of a manipulated system, i.e., externally controlled or imposed. There exist tacit rules inside a system that do not need to be specified or clarified and search the system equilibrium based on the collective welfare principle. The other rules are imposed over the system when one or many of its members violate this principle and maximize its individual welfare at the expense of the group.  相似文献   

14.
The principal results of Schrödinger's paper are reviewed and a possible extension of his formalism for diffusion processes to general quantum mechanical processes is given. The formalism is not in accord with the general theory of transformation of quantum mechanics and violates the basic assumption of the unpredictable change of a system due to a measurement. Nevertheless, the formalism leads to a density operator which is constructed according to accepted quantum mechanical rules.In memory of Erwin Schrödinger, 1887–1961.  相似文献   

15.
16.
Distant correlations are investigated within the framework of quantum mechanics. They are inherent to any physical situation in which two separated quantal systems are described by one composite state vector. Owing to correlations of this kind one can perform a measurement on one of the systems, thereby measuring a certain observable on the other (distant) system without interacting with it. Necessary and sufficient conditions are given for such a distant measurement to take place. It is found which are the observables that can be measured distantly, and which are the states of the distant system obtainable in this way. Solution of these problems is achieved by replacing the composite state vector by two entities equivalent to it: the reduced statistical operator of the system which is directly measured and a correlation operator. The latter gives a connection between states, observables, and probabilities of the two systems. Experimental evidence for distant measurement is discussed.  相似文献   

17.
18.
The standard model of the quantum theory of measurement is based on an interaction Hamiltonian in which the observable to be measured is multiplied by some observable of a probe system. This simple Ansatz has proved extremely fruitful in the development of the foundations of quantum mechanics. While the ensuing type of models has often been argued to be rather artificial, recent advances in quantum optics have demonstrated their principal and practical feasibility. A brief historical review of the standard model together with an outline of its virtues and limitations are presented as an illustration of the mutual inspiration that has always taken place between foundational and experimental research in quantum physics.  相似文献   

19.
Distance measures between quantum states like the trace distance and the fidelity can naturally be defined by optimizing a classical distance measure over all measurement statistics that can be obtained from the respective quantum states. In contrast, Petz showed that the measured relative entropy, defined as a maximization of the Kullback–Leibler divergence over projective measurement statistics, is strictly smaller than Umegaki’s quantum relative entropy whenever the states do not commute. We extend this result in two ways. First, we show that Petz’ conclusion remains true if we allow general positive operator-valued measures. Second, we extend the result to Rényi relative entropies and show that for non-commuting states the sandwiched Rényi relative entropy is strictly larger than the measured Rényi relative entropy for \(\alpha \in (\frac{1}{2}, \infty )\) and strictly smaller for \(\alpha \in [0,\frac{1}{2})\). The latter statement provides counterexamples for the data processing inequality of the sandwiched Rényi relative entropy for \(\alpha < \frac{1}{2}\). Our main tool is a new variational expression for the measured Rényi relative entropy, which we further exploit to show that certain lower bounds on quantum conditional mutual information are superadditive.  相似文献   

20.
By constructing the four-dimensional phase space based on the observable physical quantity of Kerr black hole and gauge transformation, the Kerr black hole entropy in the phase space was obtained. Then considering the corresponding mechanical quantities as operators and making the operators quantized, entropy spectrum of Kerr black hole was obtained. Our results show that the Kerr black hole has the entropy spectrum with equal intervals, which is in agreement with the idea of Bekenstein. In the limit of large event horizon, the area of the adjacent event horizon of the black hole have equal intervals. The results are in consistent with the results based on the loop quantum gravity theory by Dreyer et al.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号