首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Controllable CdS nanoparticles (NPs) decorated on TiO2 nanotube arrays (NTAs) were prepared via electrodeposition in DMSO solution at room temperature, aiming to improve the photoelectrochemical properties of TiO2 NTA electrode in visible-light region. By tuning the concentrations of sulfur and Cd2 + as well as the deposition time, CdS NPs with different sizes can be controllably synthesized at room temperature. Excellent photocurrent response and incident photo to current conversion efficiency were achieved with smaller CdS NPs with optimal reactant concentrations and deposition time, which can be attributed to highly efficient charge separation and high dispersion of CdS NPs on both inner and outer surfaces of TiO2 nanotubes.  相似文献   

2.
通过一定体积比的CdS和普鲁士蓝(PB)胶体纳米溶液的简单混合,制备了PB/CdS纳米复合物。在共反应剂存在条件下,PB纳米粒子含量较低时,在ITO电极上CdS纳晶的电致化学发光(ECL)强度可以增强3倍左右。PB纳米粒子含量较高时,CdS纳晶的ECL强度则显著降低。详细讨论了PB纳米粒子对CdS纳晶ECL影响的机理。PB纳米粒子对CdS纳晶的ECL增强可用于H2O2传感。该传感器对H2O2响应的线性范围为3.3×10-8~6.5×10-3 mol.L-1(R=0.999 2),检测限为12 nmol.L-1(S/N=3),传感器具有良好的稳定性和重现性。  相似文献   

3.
A cadmium complex of the general formula Cd(C13H9O2NCl)2(H2O)2 {C13H9O2NCl = 2-(4-chlorophenylamino)benzoate} was synthesized and characterized regarding its CHN data, solution molar conductivity and spectroscopic (UV–Vis. and IR) properties. Cadmium sulfide nanoparticles (CdS NPs) were grown form the microcrystalline complex and thiourea via a hydrothermal route. The as-prepared NPs were assigned based on X-ray powder diffraction (PXRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM) and Brunauer – Emmett – Teller (BET) surface area measurements. The CdS absorption and emission spectra were also recorded that revealed an energy gap of 2.47 eV and large Stokes shift of 130 nm. For the as-prepared NPs, the measurements have also indicated a mesoporous structure and an average particle size of 20–28 nm associated with an average pore diameter of 11.21 nm. The as-synthesized CdS NPs acted as antifungal controlling agent against human and plant pathogenic fungi of serious environmental and health concerns. The NPs at concentration of 200 ppm inhibited several fungi with inhibition efficiency of 100% against Aspergillus ustus Au-28. The nanoparticles induced morphological abnormalities in fungal mycelia, conidia and vesicle. Additionally, they inhibited the conidia septum formation, accelerated the chlamydospores generation and enlarged the yeast cells.  相似文献   

4.
Nanoparticulate gold supported on a Keggin‐type polyoxometalate (POM), Cs4[α‐SiW12O40]⋅n H2O, was prepared by the sol immobilization method. The size of the gold nanoparticles (NPs) was approximately 2 nm, which was almost the same as the size of the gold colloid precursor. Deposition of gold NPs smaller than 2 nm onto POM (Au/POM) was essential for a high catalytic activity for CO oxidation. The temperature for 50 % CO conversion was −67 °C. The catalyst showed extremely high stability for at least one month at 0 °C with full conversion. The catalytic activity and the reaction mechanism drastically changed at temperatures higher than 40 °C, showing a unique behavior called a U‐shaped curve. It was revealed by IR measurement that Auδ+ was a CO adsorption site and that adsorbed water promoted CO oxidation for the Au/POM catalyst. This is the first report on CO oxidation utilizing Au/POMs catalysts, and there is a potential for expansion to various gas‐phase reactions.  相似文献   

5.
Nanoparticulate gold supported on a Keggin‐type polyoxometalate (POM), Cs4[α‐SiW12O40]?n H2O, was prepared by the sol immobilization method. The size of the gold nanoparticles (NPs) was approximately 2 nm, which was almost the same as the size of the gold colloid precursor. Deposition of gold NPs smaller than 2 nm onto POM (Au/POM) was essential for a high catalytic activity for CO oxidation. The temperature for 50 % CO conversion was ?67 °C. The catalyst showed extremely high stability for at least one month at 0 °C with full conversion. The catalytic activity and the reaction mechanism drastically changed at temperatures higher than 40 °C, showing a unique behavior called a U‐shaped curve. It was revealed by IR measurement that Auδ+ was a CO adsorption site and that adsorbed water promoted CO oxidation for the Au/POM catalyst. This is the first report on CO oxidation utilizing Au/POMs catalysts, and there is a potential for expansion to various gas‐phase reactions.  相似文献   

6.
A novel TiO2 nanotube array/CdS nanoparticle/ZnO nanorod (TiO2 NT/CdS/ZnO NR) photocatalyst was constructed which exhibited a wide‐absorption (200–535 nm) response in the UV/Vis region and was applied for the photoelectrocatalytic (PEC) degradation of dye wastewater. This was achieved by chemically assembling CdS into the TiO2 NTs and then constructing a ZnO NR layer on the TiO2 NT/CdS surface. Scanning electron microscopy (SEM) results showed that a new structure had been obtained. The TiO2 NTs looked like many “empty bottles” and the ZnO NR layer served as a big lid. Meanwhile the CdS NPs were encapsulated between them with good protection. After being sensitized by the CdS NPs, the absorption‐band edge of the obtained photocatalyst was obviously red‐shifted to the visible region, and the band gap was reduced from its original 3.20 eV to 2.32 eV. Photoelectric‐property tests indicated that the TiO2 NT/CdS/ZnO NR material maintained a very high PEC activity in both the ultraviolet (UV) and the visible region. The maximum photoelectric conversion efficiencies of TiO2 NT/CdS/ZnO NR were 31.8 and 5.98 % under UV light (365 nm) and visible light (420–800 nm), respectively. In the PEC oxidation, TiO2 NT/CdS/ZnO NR exhibited a higher removal ability for methyl orange (MO) and a high stability. The kinetic constants were 1.77×10?4 s?1 under UV light, which was almost 5.9 and 2.6 times of those on pure TiO2 NTs and TiO2 NT/ZnO NR, and 2.5×10?4 s?1 under visible light, 2.4 times those on TiO2 NT/CdS.  相似文献   

7.
We reported controllable synthesis of CdS nanocrystal-polymer transparent hybrids by using polymethylmethacrylate (PMMA) as a polymer matrix. In a typical run, the appropriate amounts of cadmium chloride (CdCl2) and sodium sulfide (Na2S) in the presence of 2-mercaptoethanol (ME) as the organic ligand are well dispersed in H2O/DMF solution without any aggregation. From a combination of transmission electron microscopy (TEM) and a computing method of Brus’s model according UV-vis absorption spectra, the particle size of as-prepared hydroxyl-coated CdS nanocrystal was determined to be about 5 nm. Then, with the surface treatment with methacryloxypropyltrimethoxysilane (MPS), CdS-PMMA hybrids were obtained via free radical polymerization in situ. FT-IR characterization indicates the formation of robust bonding between CdS nanocrystals and the organic ligand and the formation of double-bond functional CdS nanocrystals. The TGA measurement displays CdS-PMMA hybrids possess better thermal stability compared with pure PMMA polymer. The fluorescence measurement shows that CdS nanocrystals and CdS-PMMA hybrids exhibit good optical properties. Also, the luminescent photographs taken under ultraviolet light prove the luminescence properties.  相似文献   

8.
采用简单的化学还原沉积和二次水热的方法成功制备了CdS和Au共同修饰Z型CdS/Au/Bi2MoO6(CdS/Au/BMO)光催化剂。通过X射线粉末衍射(XRD)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)等测试技术对其组成、形貌、光吸收特性和光电化学性能等进行系统表征。实验结果表明,CdS/Au/BMO-2复合材料在可见光照射下表现出最佳的降解效率,其降解RhB的速率常数约为BMO的8.8倍和CdS的20倍。Au NPs作为固态电子媒介,为光生电子的传输和转移提供了一个通道,同时Au NPs的表面等离子体共振(SPR)效应和CdS纳米粒子显著拓宽了催化体系对可见光的响应范围;通过对催化剂的组成、结构和光电性能表征,确定了CdS/Au/BMO的能带结构,进而探讨了CdS/Au/BMO活性增强机制。  相似文献   

9.
C−H dissociation and C−C coupling are two key steps in converting CH4 into multi-carbon compounds. Here we report a synergy of Au and Ag to greatly promote C2H6 formation over Au1Ag single-atom alloy nanoparticles (Au1Ag NPs)-modified ZnO catalyst via photocatalytic oxidative coupling of methane (POCM) with O2 and H2O. Atomically dispersed Au in Au1Ag NPs effectively promotes the dissociation of O2 and H2O into *OOH, promoting C−H activation of CH4 on the photogenerated O to form *CH3. Electron-deficient Au single atoms, as hopping ladders, also facilitate the migration of electron donor *CH3 from ZnO to Au1Ag NPs. Finally, *CH3 coupling can readily occur on Ag atoms of Au1Ag NPs. An excellent C2H6 yield of 14.0 mmol g−1 h−1 with a selectivity of 79 % and an apparent quantum yield of 14.6 % at 350 nm is obtained via POCM with O2 and H2O, which is at least two times that of the photocatalytic system. The bimetallic synergistic strategy offers guidance for future catalyst design for POCM with O2 and H2O.  相似文献   

10.
使用L-半胱氨酸作为连接剂, 利用硼氢化钠原位还原预先吸附在介孔氧化亚铜表面的氯金酸根离子,得到了Au/Cu2O异质结构. 应用X射线粉末衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)、紫外-可见(UV-Vis)光谱和N2物理吸附等手段对催化剂进行表征, 并以λ>400 nm的可见光作为光源, 评价了该催化剂光催化降解亚甲基蓝(MB)的活性. 实验结果表明, 直径为4 nm的金颗粒完好地负载在介孔氧化亚铜的表面, 并且介孔氧化亚铜的细微结构与孔径均未发生变化. 研究表明, 以乙醇作为反应溶剂有效抑制了AuCl4-与Cu2O之间的氧化还原反应, 从而有利于氧化亚铜介孔结构的保持及金颗粒的原位还原. 光催化降解亚甲基蓝的结果表明, Au/Cu2O异质结构的光催化活性比纯氧化亚铜光催化活性有明显提高. 推测其光催化性能提高的主要原因如下: 一方面, 金颗粒良好的导电性有利于氧化亚铜表面电子的快速转移, 实现电子-空穴分离; 另一方面, 金颗粒可能存在的表面等离子共振现象加速了光生电子的产生.  相似文献   

11.
CdS:Mn nanorods have been produced via a solvothermal approach in the nonaqueous solvent of ethylenediamine. An absolutely dominant single Mn2+ emission originating from the d-d (4T1-6A1) transition was obtained in CdS:Mn nanocrystals at room temperature. The effects of varying reaction temperature, molar ratio of S/Cd, and reaction time on the crystallinity and luminescence of CdS:Mn nanocrystals were systematically investigated. 1% Mn2+-doped CdS nanorods without any other additives were synthesized at 130°C for 10 h with an S/Cd molar ratio of 2:1. They show a rod-like shape, and their luminescence intensity around 593 nm is almost the strongest of all the nanorod samples investigated. CdS:Mn nanorods promise potential applications in nanoscale electronic and photonic devices.  相似文献   

12.
Mononuclear [Ce(pztza)2(H2O)6](pztza)·H2O (1) (pztza = 5-(2-pyrazinyl)tetrazole-2-acetato) has been prepared and characterized by IR, elemental analysis and single-crystal X-ray diffraction. PEG-5000 (poly(ethyleneglycol-5000)) coated [Ce(pztza)2(H2O)6](pztza)·H2O nanoparticles (NPs) can disperse into distilled water. In vitro study on Hela cells shows that Hpztza is nontoxic while [Ce(pztza)2(H2O)6](pztza)·H2O NPs show high toxicity with half-maximal inhibitory concentration (IC50) of 17 μg/mL (1.93 × 10?5 M). In addition, such NPs can inhibit the migration of Hela cells effectively.  相似文献   

13.
In the present paper a pure phase of the copper chromite spinel nanoparticles (CuCr2O4 SNPs) were synthesized via the sol–gel route using citric acid as a complexing agent. Then, the CuCr2O4 SNPs has been characterized by field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). In the next step, with the addition of Cu–Cr–O nanoparticles (NPs), the effects of different parameters such as Cu–Cr–O particle size and the Cu/Cr molar ratios on the thermal behavior of Cu–Cr–O NPs + AP (ammonium perchlorate) mixtures were investigated. As such, the catalytic effect of the Cu–Cr–O NPs for thermal decomposition of AP was evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA/DSC results showed that the samples with different morphologies exhibited different catalytic activity in different stages of thermal decomposition of AP. Also, in the presence of Cu–Cr–O nanocatalysts, all of the exothermic peaks of AP shifted to a lower temperature, indicating the thermal decomposition of AP was enhanced. Moreover, the heat released (ΔH) in the presence of Cu–Cr–O nanocatalysts was increased to 1490 J g−1.  相似文献   

14.
Three kinds of polyhedral α‐Fe2O3 nanoparticles enclosed by different facets including oblique parallel hexahedrons (op‐hexahedral NPs), cracked oblique parallel hexahedrons (cop‐hexahedral NPs), and octadecahedral nanoparticles (octadecahedral NPs), were successfully prepared by simply changing only one reaction parameter in the hydrothermal process. The structural and morphological of the products were systematically studied using various characterizations including X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), revealing that the three kinds of α‐Fe2O3 nanoparticles were enclosed by {104}, {110}/{104}, and {102}/{012}/{104} crystal planes, respectively. The exposed facets and shape of the nanocrystals were found to be affected by the adding amount of ethylene glycol in the solvent. The gas‐sensing properties and mechanism of the α‐Fe2O3 samples were studied and analyzed, which indicated that the sensitivity of the three samples followed the order of octadecahedral NPs > cop‐hexahedral NPs > op‐hexahedral NPs due to the combined effects of specific surface area and oxygen defects in the nanocrystals.  相似文献   

15.
CdS quantum dots (QD) were capped with SiO2 via a microemulsion method for reducing the toxicity and imparting the biocompatibility of the CdS QD. The resulting CdS/SiO2 core/shell nanoparticles (NP) showed an improved water‐solubility and stability even in pH 4.0 acidic medium. Their fluorescence could be effectively enhanced in the presence of bovine serum albumin (BSA), due to the passivation effect of BSA on the surface of the NP. Furthermore, the concentration dependence of the fluorescence intensity obeys the Langmuir‐type binding isotherm. Thus a novel fluorescence enhancement method for the determination of BSA has been developed using the less‐toxic CdS/SiO2 core/shell NP as probes. Under optimal conditions, the linear range of calibration curve is 0.6–30 µg·mL?1, and the detection limit is 0.18 µg·mL?1. Compared with the water‐soluble CdS NP without SiO2 shell, the CdS/SiO2 core/shell NP exhibited slightly lower fluorescence response to BSA as well as other coexisting substances, such as heavy and transition metals, due to the inhibition of SiO2 shell. The proposed method was applied to the quantification of BSA in synthetic and serum samples with satisfactory results.  相似文献   

16.
The homodispersed CdS nanoparticles were prepared on Sn-doped indium oxide substrates (ITO) to form smooth and uniform CdS thin films by electrodeposition method from a dimethyl sulfoxide (DMSO) solution containing cadmium chloride and sulfur. The structure and morphologies of samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The results indicate that DMSO played an important role in formation of CdS nanofilms by affecting the nucleation and growth of the CdS nanoparticles. So, a DMSO-assisted growth process was proposed as a plausible mechanism for the formation of smooth and uniform CdS nanofilms. According to the photoelectrochemical test, the CdS thin film prepared in 30 % DMSO + 70 % H2O system exhibited maximum photocurrent and open circuit potentials. This is because the deposited CdS nanoparticles had better dispersity on ITO, which facilitated the propagation and kinetic separation of photogenerated charges.  相似文献   

17.
We report a new green synthetic route of CdSe and core-shell CdSe/CdS nanoparticles (NPs) in aqueous solutions. This route is performed under water-bath temperature, using Se powder as a selenium source to prepare CdSe NPs, and H(2)S generated by the reaction of Na(2)SH(2)SO(4) as a sulfur source to synthesize core-shell CdSe/CdS NPs at 25-35 degrees C. The synthesis time of every step is only 20 min. After illumination with ambient natural light, photoluminescence (PL) intensities of CdSe NPs enhanced up to 100 times. The core-shell CdSe/CdS NPs have stronger photoactive luminescence with quantum yields over 20%. The obtained CdSe NPs exhibit a favorable narrow PL band (FWHM: 50-37 nm) with increasing molar ratio of Cd/Se from 4:1 to 10:1 at pH 9.1 in the crude solution, whereas PL band of corresponding CdSe/CdS NPs is slightly narrower. The emission maxima of nanocrystals can be tuned in a wider range from 492 to 592 nm in water by changing synthesis temperature of CdSe core than those reported previously. The resulting new route is of particular interest as it uses readily-available reagents and simple equipment to synthesize high-quality water-soluble CdSe and CdSe/CdS nanocrystals.  相似文献   

18.
Based on the experimental zinc blende and wurtzite structures of CdS nanocrystals, five new CdS clusters (Cd3S3, (Cd3S3)2, (Cd3S3)3, Cd4S4 with C2V, and Cd4S4 with TD symmetry) are investigated via optimization of their original structures at B3LYP/Lanl2dz theoretical level. Through considering integration influence of solvent and ligand, our calculated Raman and absorption spectra can be consistent with the reported experimental results. First, our calculated Raman peaks of Cd3S3, Cd4S4 (TD), (Cd3S3)2, and (Cd3S3)3 are within the range of 260–290 cm?1, which is also reported by experiment. Subsequently, for deep researching five clusters, the absorption spectra of them are calculated using time‐dependent DFT method. The wavelengths of the absorption peaks, which is calculated in solvent, increase in the order Cd3S3, Cd4S4 (TD), (Cd3S3)2, and (Cd3S3)3. Moreover, the wavelengths of absorption peaks shift to blue in solvent, compared with those without solvent. Furthermore, our clusters are smaller than the size of the smallest CdS nanocrystals, the calculated absorption spectra of five clusters in solvent show obvious blue shift than the wavelengths of absorption spectra of reported CdS nanocrystals. This is induced by the quantum size effect. Besides, we further investigated the influence of ligands to CdS unit in aqueous condition. Through structures and characters analysis of S? Cd? SR, we discovered that ligands took important role during the formation of CdS nanocrystals in aqueous synthesis. Calculated results of spectra, bond length, and Wiberg bond index (WBI) values show that different ligands have similar influence on CdS unit. Moreover, using WBI values, we also confirm that Cd atom has stronger interaction with S in nanocrystals than that with S atom in ligand. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

19.
Abstract

Developing new drugs for the treatment of cancer is of great significance. Coordination compounds based on tetrazole-carboxylates are the potential candidates for cancer treatment. In this article, [Ce2(atzpa)4(H2O)8](NO3)2·2H2O based on 5-aminotetrazole-1-propanoic acid (Hatzpa) and Ce(NO3)3·6H2O has been designed and prepared. Single-crystal X-ray diffraction reveals that the compound is binuclear in which atzpa acts as a bridging ligand. In order to improve the water dispersity of this compound, PEG-5000 (poly(ethyleneglycol-5000)) was coated on [Ce2(atzpa)4(H2O)8](NO3)2·2H2O to prepare the nanoparticles (NPs) in distilled water. In vitro study on HeLa cells shows that Hatzpa is nontoxic itself, while [Ce2(atzpa)4(H2O)8](NO3)2·2H2O NPs show high toxicity. Such NPs have a low half-inhibitory concentration (IC50) of 24?μg mL?1 (2.0?×?10?5 M). In addition, such NPs are able to inhibit the migration of HeLa cells even at a low concentration effectively, showing their potential to inhibit the transfer of tumors in vivo.  相似文献   

20.
Low-cost and scalable preparation,high photocatalytic activity,and convenient recycle of Zn O nanopowders(NPs)would determine their practical application in purifying wastewater.In this contribution,ZnO NPs were scalably synthesized via the simple reaction of Zn powder with H_2O vapor in autoclave.The structural,morphological and optical properties of the samples were systematically characterized by X-ray diffraction,scanning electron microscopy,Fourier transform infrared spectra,transmission electron microscopy,Micro-Raman,photoluminescence,and ultraviolet-visible spectroscopy.The as-prepared Zn O NPs are composed of nanoparticles with 100–150 nm in diameter,and have a small Brunauer-Emmett-Teller surface area of 6.85 m~2/g.The formation of Zn O nanoparticles is relative to the peeling of H_2 release.Furthermore,the product has big strain-stress leading to the red-shift in the band gap of product,and shows a strong green emission centered at 515 nm revealing enough atomic defects in Zn O NPs.As a comparison with P25,the obtained dust gray Zn O NPs have a strong absorbance in the region of 200–700 nm,suggesting the wide wave-band utilization in sunlight.Based on the traits above,the Zn O NPs show excellent photocatalytic activity on the degradation of rhodamine B(Rh-B)under solar light irradiation,close to that under UV irradiation.Importantly,the Zn O NPs could be well recycled in water due to the quick sedimentation in themselves in solution.The low-cost and scalable preparation,high photocatalytic activity,and convenient recycle of Zn O NPs endow themselves with promising application in purifying wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号