首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A facile and ultrasensitive electrochemiluminescent (ECL) immunosensor for detection of prostate-specific antigen (PSA) was designed by using CdTe quantum dots coated silica nanoparticles (SiO2@QDs) as bionanolabels. To construct such an electrochemiluminescence immunosensor, gold nanoparticles-dotted graphene composites were immobilized on the working electrode, which can increase the surface area to capture a large amount of primary antibodies as well as improve the electronic transmission rate. The as-prepared SiO2@QDs used as bionanolabels, showed good ECL performance and good ability of immobilization for secondary antibodies. The approach provided a good linear response ranging from 0.005 to 10 ng?mL?1 with a low detection limit of 0.0032 ng?mL?1. Such immunosensor showed good precision, acceptable stability, and reproducibility. Satisfactory results were obtained for determination of PSA in human serum samples. Therefore, the proposed method provides a new promising platform of clinical immunoassay for other biomolecules.  相似文献   

2.
Self-organized TiO2-nanotube layers can be used for immunoassay-type sensing in combination with amplifying CdTe labels in a direct and very sensitive electrochemiluminescent (ECL) configuration. Key properties for this method are the conductivity of the TiO2 nanotubes, and their transparency for light emitted from the CdTe labels at approximately 2.4 eV. To demonstrate the potential of this platform, we constructed a sandwich-type immunoassay onto the TiO2-nanotube wall with a layer of (3-aminopropyl)triethoxysilane as the cross-linker for antibody immobilization. For the counter part of the sandwich, we created an amplification system consisting of TiO2 nanobeads carrying the secondary antibody and multiple CdTe quantum dots (multiQD). For antigen (IgG) detection, we find that this combination of 3D transparent electrode with multiQD labels allows for an ECL detection limit of 0.05 pg mL−1 and a linearity of the signal in the range of 0.1–108 pg mL−1.  相似文献   

3.
We report on a novel electrochemiluminescent (ECL) immunoassay for the ultrasensitive determination of morphine by making use of a gold electrode which was modified with a nanocomposite film containing self-assembled polyamidoamine (PAMAM) CdS quantum dots and electrodeposited gold nanoparticles (Au-NPs). The highly uniform and well-dispersed quantum dots were capped with PAMAM dendrimers. Due to the synergistic effect of the modified quantum dots and the electrodeposited Au-NPs, the ECL response is dramatically enhanced. Under optimal experimental conditions, the immunoreaction between morphine and anti-morphine antibody resulted in a decrease of the ECL signal because of steric hindrance. The calibration plot is linear in the morphine concentration range from 0.2 to 180 ng?mL?1, with a detection limit as low as 67 pg?mL?1. The sensor was successfully applied to the determination of morphine in blood plasma. This kind of assay is expected to pave new avenues in label-free drug assays.
Figure
?  相似文献   

4.
An electrochemiluminescence-based immunoassay using quantum dots (QDs) as labels for the carcinoembryonic antigen (CEA) was developed using an electrode modified with leafs of nanoporous gold. CEA was initially immobilized on the electrode via a sandwich immunoreaction, and then CdTe quantum dots capped with thioglycolic acid were used to label the second antibody. The intensity of the ECL of the QDs reflects the quantity of CEA immobilized on the electrode. Thus, in the presence of dithiopersulfate as the coreactant, the ECL serves as the signal for the determination of CEA. The intensity of the electroluminescence (ECL) of the electrode was about 5.5-fold higher than that obtained with a bare gold electrode. The relation between ECL intensity and CEA concentration is linear in the range from 0.05 to 200?ng.mL-1, and the detection limit is 0.01?ng.mL-1. The method has the advantages of high sensitivity, good reproducibility and long-term stability, and paves a new avenue for applying quantum dots in ECL-based bioassays.
Figure
Electrochemiluminescence Immunoassay Based on CdTe Quantun Dots as labels at Nanoporous Gold Leaf electrode  相似文献   

5.
This work demonstrated the feasibility of detecting hydrocortisone in cosmetics using a novel CdSe/CdS quantum dots‐based competitive fluoroimmunoassay with magnetic core/shell Fe3O4/Au nanoparticles (MCFN) as solid carriers. Hydrocortisone antigen was labeled with the synthesized core/shell CdSe/CdS quantum dots (QDs) to form the antigen‐QDs conjugate. Meanwhile, hydrocortisone antibody was incubated with MCFN and the immobilized antibody was obtained. The immobilized antibody was then mixed sequentially with hydrocortisone and a slightly excess amount of the QDs‐labeled hydrocortisone antigen, allowing their competition for binding with the antibody immobilized on MCFN. The bound hydrocortisone and the antigen‐QDs conjugates on MCFN were removed subsequently after the mixture was applied to a magnetic force. The analyte concentration was obtained by measuring the fluorescence intensity of the unbound hydrocortisone antigen‐QDs conjugates. The proposed method was characterized by simplicity, rapidity, and high sensitivity with a wide linear working range of 0.5 to 15000 pg·mL?1 and a low detection limit of 0.5 pg·mL?1. The proposed method was successfully applied to the determination of hydrocortisone in cosmetics with satisfactory results.  相似文献   

6.
α‐Synuclein (α‐SYN) is a very important neuronal protein that is associated with Parkinson’s disease. In this paper, we utilized Au‐doped TiO2 nanotube arrays to design a photoelectrochemical immunosensor for the detection of α‐SYN. The highly ordered TiO2 nanotubes were fabricated by using an electrochemical anodization technique on pure Ti foil. After that, a photoelectrochemical deposition method was exploited to modify the resulting nanotubes with Au nanoparticles, which have been demonstrated to facilitate the improvement of photocurrent responses. Moreover, the Au‐doped TiO2 nanotubes formed effective antibody immobilization arrays and immobilized primary antibodies (Ab1) with high stability and bioactivity to bind target α‐SYN. The enhanced sensitivity was obtained by using {Ab2‐Au‐GOx} bioconjugates, which featured secondary antibody (Ab2) and glucose oxidase (GOx) labels linked to Au nanoparticles for signal amplification. The GOx enzyme immobilized on the prepared immunosensor could catalyze glucose in the detection solution to produce H2O2, which acted as a sacrificial electron donor to scavenge the photogenerated holes in the valence band of TiO2 nanotubes upon irradiation of the other side of the Ti foil and led to a prompt photocurrent. The photocurrents were proportional to the α‐SYN concentrations, and the linear range of the developed immunosensor was from 50 pg mL?1 to 100 ng mL?1 with a detection limit of 34 pg mL?1. The proposed method showed high sensitivity, stability, reproducibility, and could become a promising technique for protein detection.  相似文献   

7.
We report on a sensitive electrochemical aptasensor for the detection of human prostate specific antigen (PSA). It is based on the signal amplification of the biotin-avidin system using a sensing platform that is making use of a graphite electrode modified with gold nanoparticles that were covered with graphitized mesoporous carbon nanoparticles (AuNPs@GMCs). The AuNPs@GMCs hybrid was prepared by linking 1,6-hexanedithiol-functionalized GMCs and gold nanoparticles via Au-S groups. Then, streptavidin was immobilized on the electrode modified with the AuNPs@GMCs so to enlarge the amount of biotin-aptamer which led to enhanced detection sensitivity. If an PSA aptamer captures the target PSA on the electrode, the differential pulse voltammetric (DPV) signal of the hexacyanoferrate redox system decreases. Factors affecting the performance of the aptasensor were studied in detail. Under optimal conditions, the DPV signal changes could be used to quantitatively detect PSA in the concentration range from 0.25 to 200?ng?mL?1, with a lowest limit of detection as small as 0.25?ng?mL?1. The aptasensor is highly specific and displays acceptable precision, good stability and repeatability.  相似文献   

8.
Controllable CdS nanoparticles (NPs) decorated on TiO2 nanotube arrays (NTAs) were prepared via electrodeposition in DMSO solution at room temperature, aiming to improve the photoelectrochemical properties of TiO2 NTA electrode in visible-light region. By tuning the concentrations of sulfur and Cd2 + as well as the deposition time, CdS NPs with different sizes can be controllably synthesized at room temperature. Excellent photocurrent response and incident photo to current conversion efficiency were achieved with smaller CdS NPs with optimal reactant concentrations and deposition time, which can be attributed to highly efficient charge separation and high dispersion of CdS NPs on both inner and outer surfaces of TiO2 nanotubes.  相似文献   

9.
利用阳极氧化法在钛金属基体表面制备一层TiO2纳米管阵列薄膜, 然后通过水热反应在TiO2纳米管上负载CdS纳米粒子, 形成CdS/TiO2纳米管的复合结构。利用SEM、XRD、XPS、UV-Vis等手段对其形貌和结构进行表征。进一步考察了CdS/TiO2纳米管的光电性能和光催化活性, 结果表明, 相比于TiO2纳米管, CdS/TiO2纳米管复合结构在紫外光和可见光下都具有更好的光催化活性及光电性能。  相似文献   

10.
TiO2–SrTiO3 heterostructure nanotube arrays have been utilized as a novel oxide substrate for CdS quantum dot sensitized solar cells (QDSCs). SrTiO3 on TiO2 surface passivates surface states of TiO2 and builds cascade-structured band alignment, which significantly reduces charge recombination at electrode surface. CdS/TiO2–SrTiO3 electrode exhibits a superior photoelectrochemical performance than CdS/TiO2 electrode with ~ 70% increase in external quantum efficiency. This study suggests that the suppression of charge recombination at electrode surface is critical to efficient solar energy conversion.  相似文献   

11.
An immunosensor was prepared for the determination of carcinoembryonic antigen (CEA). It is based on the use of multiwalled carbon nanotubes (MWCNTs) along with horseradish peroxidase-labeled antibody. The enzyme was assembled onto MWCNTs templates using the layer-by-layer technique and then conjugated to carcinoembryonic secondary antibodies (Ab2) as the enzyme label. The resulting assembly results in a largely amplified sensitivity. The response is linear in the range of 0.05 to 45?ng?mL-1, with a detection limit of 16.0?pg?mL-1. The immunosensor possesses good stability and good reproducibility.
Figure
A new immunosensor with double-layer enzyme-modified carbon nanotubes as label for sandwich-type tumor markers was proposed in this study  相似文献   

12.
利用阳极氧化法在钛金属基底表面制备一层TiO2纳米管阵列薄膜,然后通过水热反应在TiO2纳米管上负载CdS纳米粒子,形成CdS/TiO2纳米管的复合结构。利用SEM、XRD、XPS、UV-Vis等手段对其形貌和结构进行表征。进一步考察了CdS/TiO2纳米管的光电性能和光催化活性,结果表明,相比于TiO2纳米管,CdS/TiO2纳米管复合结构在紫外光和可见光下都具有更好的光催化活性及光电性能。  相似文献   

13.
An amperometric carcinoembryonic antigen (CEA) immunosensor was fabricated based on Prussian blue (PB), nano-calcium carbonate (nano-CaCO3) and nano-gold modified glassy carbon electrode. First, PB as a mediator was deposited on glassy carbon electrode to obtain a negatively charged surface. Then, positive nano-CaCO3 was adsorbed on the PB modified electrode through electrostatic interaction. Subsequently, gold nanoparticles were deposited on the nano-CaCO3/PB modified electrode. The use of two kinds of nanomaterials (nano-CaCO3 and nano-gold) with good biocompatibility as immobilization matrixes not only provides a biocompatible surface for protein loading but also avoids the leaking of PB. The size of nano-CaCO3 was characterized by transmission electron microscopy (TEM). The factors influencing the performance of the immunosensor presented were studied in detail. Under the optimized conditions, cyclic voltammograms (CV) determination of CEA showed a specific response in two concentration ranges from 0.3 to 20 ng mL?1 and from 20 to 100 ng mL?1 with a detection limit of 0.1 ng mL?1 at a signal-to-noise ratio of 3. The immunosensor presented exhibited high selectivity, sensitivity and good stability.  相似文献   

14.
A selective, sensitive novel electrochemical sensor for detection of methyl parathion on the preparation of a carbon dots (C-dots)/ZrO2 nanocomposite was developed. The C-dots/ZrO2 nanocomposite was fabricated using electrochemical deposition onto a glassy carbon electrode and characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and cyclic voltammetry. The optimum parameters such as effect of pH, accumulation time, accumulation potential, scan rate, effect of amount of C-dots and effect of amount of ZrO2 were investigated. The C-dots/ZrO2 modified glassy carbon electrode allowed rapid, selective determination of methyl parathion in rice samples by adsorptive stripping voltammetry. The stripping response was highly linear over the methyl parathion concentrations ranging from 0.2 ng mL?1 to 48 ng mL?1, with a detection limit of 0.056 ng mL?1. This novel electrochemical nanocomposite-based electrochemical sensor was successfully applied for the detection of methyl parathion in rice samples.  相似文献   

15.
In this paper, a thiol graphene‐thiol chitosan‐gold nanoparticles (thGP‐thCTS‐AuNPs) nanocomposites film with porous structure was fabricated by electrochemically depositing on glassy carbon electrode (GCE), which exhibited good biocompatibility and improved conductivity, to construct immunosensor free label for detection of carcinoembryonic antigen (CEA). The electrochemical behavior of this immunosensor was investigated by cyclic voltammetry. Under the optimum conditions, the immunosensor revealed a good amperometric response to CEA in two linear ranges (0.3–8.0 ng mL?1 and 8.0–100 ng mL?1) with a detection limit of 0.03 ng mL?1. The results indicated that the immunosensor has the advantages of good selectivity, high sensitivity, and good stability for the determination of CEA.  相似文献   

16.
A visible‐light driven photoelectrochemical (PEC) sensor based on aptamer immobilized TiO2‐Fe2O3 nanotubes was proposed for the first time and highly sensitive and selective bisphenol A determination was realized. Taking advantage of the alloy oxide nanotube structure, high surface area, good biocompatibility, superior photoelectrocatalytic performance, a limit of detection toward BPA as low as 1.8×10?11 M with linearity in the range from 1.8×10?11 to 3.2×10?9 M could be achieved. Specificity was greatly exhibited for this aptasensor under 100‐fold excess concentration of estriol, resorcinol, nonylphenol, 2,4‐D, acetamiprid, chlorpyrifos and omethoate. Simultaneously, satisfactory results were obtained in real water sample investigation from industrial plastics and drinking water. A novel visible‐light driven PEC method for highly sensitive and selective detection of BPA was thus established.  相似文献   

17.
《Electroanalysis》2006,18(10):1007-1013
A highly hydrophilic and nontoxic colloidal silica nanoparticle/titania sol–gel composite membrane was prepared on a gold electrode via a chemical vapor deposition method. With carcinoembryonic antigen (CEA) as a model antigen and encapsulation of carcinoembryonic antibody (anti‐CEA) in the composite architecture, this membrane could be used for reagentless electrochemical immunoassay. The presence of silica nanoparticles provided a congenial microenvironment for adsorbed biomolecules. The formation of immunoconjugate by a simple one‐step immunoreaction between CEA in sample solution and the immobilized anti‐CEA introduced the change in the potential. The modified procedure was further characterized by electrochemical impedance spectroscopy and cyclic voltammetry. Compared to the commonly applied methods, i.e., the TiO2 direct embedding procedure, this strategy could allow for antibodies immobilized with higher loading amount and better retained immunoactivity. The resulting immunosensor exhibited high sensitivity, good precision, acceptable stability, accuracy, reproducibility and wide linear range from 1.5 to 240 ng mL?1 with a detection limit of 0.5 ng mL?1 at 3σ. Analytical results of clinical samples show that the developed immunoassay is comparable with the enzyme‐linked immunosorbent assays (ELISAs) method, implying a promising alternative approach for detecting CEA in the clinical diagnosis. Furthermore, this composite membrane could be used efficiently for the entrapment of other biomarkers and clinical applications.  相似文献   

18.
CdS quantum dots (QD) were capped with SiO2 via a microemulsion method for reducing the toxicity and imparting the biocompatibility of the CdS QD. The resulting CdS/SiO2 core/shell nanoparticles (NP) showed an improved water‐solubility and stability even in pH 4.0 acidic medium. Their fluorescence could be effectively enhanced in the presence of bovine serum albumin (BSA), due to the passivation effect of BSA on the surface of the NP. Furthermore, the concentration dependence of the fluorescence intensity obeys the Langmuir‐type binding isotherm. Thus a novel fluorescence enhancement method for the determination of BSA has been developed using the less‐toxic CdS/SiO2 core/shell NP as probes. Under optimal conditions, the linear range of calibration curve is 0.6–30 µg·mL?1, and the detection limit is 0.18 µg·mL?1. Compared with the water‐soluble CdS NP without SiO2 shell, the CdS/SiO2 core/shell NP exhibited slightly lower fluorescence response to BSA as well as other coexisting substances, such as heavy and transition metals, due to the inhibition of SiO2 shell. The proposed method was applied to the quantification of BSA in synthetic and serum samples with satisfactory results.  相似文献   

19.
A rapid and ultrasensitive electrochemiluminescence (ECL) competitive immunoassay based on CdSe quantum dots (QDs) and the shorter chain as possible (cysteamine and glutaraldehyde) has been designed for the detection of salbutamol (SAL). Cysteamine and glutaraldehyde made coating antigen immobilize well on the gold electrode surface through the reaction between functional groups, which brought about the simplicity of the immunosensor to some extent. Transmission electron microscopy image, dynamic light scattering, photoluminescence, ultraviolet‐visible absorption and electrochemical impedance spectra were used to characterize the prepared CdSe QDs and the cysteamine/glutaraldehyde/Ovalbumin‐SAL/anti‐SAL‐QDs immunosensor. In the air‐saturated PBS buffer containing 0.1 M K2S2O8 and 0.1 M KCl (pH 9.0), a strong ECL emission of QDs can be observed which depended linearly on the logarithm of the salbutamol concentration with a wide range from 0.05 ng mL?1 to 100 ng mL?1, and a detection limit of 0.0056 ng mL?1. The sensitivity, repeatability, and specificity of the ECL immunosensor have been evaluated. The sensor has been applied to real samples with satisfactory results. This work will open new ways of detecting food additive residue based on QDs ECL in immunoassays.  相似文献   

20.
A high‐sensitivity carcinoembryonic antigen immunosensor was successfully prepared via a one‐step hydrothermal method, wherein nitrogen‐doped graphene oxide (Nr GO) loaded Ag and Co3O4 nanomaterials were synthesized using ammonia as the nitrogen source. Doping nitrogen atoms into the graphene structure forms a new type of N‐type semiconductor with an increased number of graphene layers and more active sites for bonding with chemicals, thereby providing excellent in biocompatibility and good electrical conductivity. The electrical signal of the sensor is further amplified due to the good catalytic effect of Co3O4 and Ag NPs on H2O2. The signal probe requires neither pretreatment nor acid treatment, and can be easy to loaded with metal‐immobilized antibodies, which greatly simplifies the detection step not shorten the detection time. The sensor has good sensitivity to detecting carcinoembryonic antigen (CEA) and can easily operate, and requires mild reaction conditions. Under optimal experimental conditions, the linear range of the sensor is 0.001–200 ng ? mL?1, the detection limit is 0.18 pg ? mL?1, and the linear correlation coefficient is 0.991, which can be used for CEA determination of the actual sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号