首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The electrochemical detection of BPA often requires modification of electrodes to overcome BPA′s slower kinetics and higher oxidation potential. This work reports a modification-free, paper electrode based on vacuum-filtered SWCNT thin film. The prepared electrode does not need to be polished or transferred into the conducting substrates. The linear sweep voltammetric detection showed a linear response from 0.5–10 μM and 25–100 μM with the experimental LOD of 1.0 μM (S/N=3). The interference study and good recovery percentage (93–105 %) in real water samples demonstrated the method‘s selectivity. The sensor can be promising for developing a simple, low-cost, portable, and paper-based BPA monitoring system.  相似文献   

2.
金-石墨烯修饰电极电化学检测塑料瓶中双酚A   总被引:1,自引:0,他引:1  
在离子液体碳糊电极(CILE)表面上采用一步电还原法制备了纳米金(nAu)-石墨烯(GR)复合膜修饰电极(nAu-GR/CILE).研究了双酚A(BPA)在nAu-GR/CILE上的电化学行为,BPA的电极反应过程为受吸附控制的不可逆过程;采用示差脉冲伏安法研究了BPA氧化峰电流和浓度之间的关系,在0.08~400.0...  相似文献   

3.
Xiaoqiang Liu 《Talanta》2009,77(4):1437-1443
Low picograms of the hormone 17β-estradiol were detected at an electrochemical immunosensor. This immunosensor features a gold nanoparticle|Protein G-(LC-SPDP)1-scaffold, to which a monoclonal anti-estradiol capture antibody was immobilised to facilitate a competitive immunoassay between sample 17β-estradiol and a horseradish peroxidase-labelled 17β-estradiol conjugate. Upon constructing this molecular architecture on a disposable gold electrode in a flow cell, amperometry was conducted to monitor the reduction current of benzoquinone produced from a catalytic reaction of horseradish peroxidase. This current was then quantitatively related to 17β-estradiol present in a sample. Calibration of immunosensors in blood serum samples spiked with 17β-estradiol yielded a linear response up to ∼1200 pg mL−1, a sensitivity of 0.61 μA/pg mL−1 and a detection limit of 6 pg mL−1. We attribute these favourable characteristics of the immunosensors to the gold nanoparticle|Protein G-(LC-SPDP) scaffold, where the gold nanoparticles provided a large electrochemically active surface area that permits immobilisation of an enhanced quantity of all components of the molecular architecture, while the Protein G-(LC-SPDP) component aided in not only reducing steric hindrance when Protein G binds to the capture antibody, but also providing an orientation-controlled immobilisation of the capture antibody. Coupled with amperometric detection in a flow system, the immunosensor exhibited excellent reproducibility.  相似文献   

4.
5.
在金纳米粒子(AuNPs)上经苯硫酚衍生物(3,4二羟基苯基-偶氮-苯硫酚, DAT)自组装制得了一种新型纳米复合物,用于修饰玻璃碳电极(GCE/AuNP-DAT).采用循环伏安法研究了该新型电极的性质,并将其用作异丙肾上腺素(IP)电催化剂,考察了该纳米复合物的电催化活性,从而得到反应机理和催化反应速率常数.由于GCE/AuNP-DAT电极对尿酸氧化没有电催化活性,因此可将IP的氧化信号从该改进电极中分离出来,从而排除了尿酸对IP测定的干扰.该电极可作为传感器,当用于差动脉冲伏安法测定IP时,线性动态范围为1.0–1500.0μmol/L,检测极限为0.46μmol/L.  相似文献   

6.
Synthesis and electrochemical applications of gold nanoparticles   总被引:1,自引:0,他引:1  
Guo S  Wang E 《Analytica chimica acta》2007,598(2):181-192
This review covers recent advances in synthesis and electrochemical applications of gold nanoparticles (AuNPs). Described approaches include the synthesis of AuNPs via designing and choosing new protecting ligands; and applications in electrochemistry of AuNPs including AuNPs-based bioelectrochemical sensors, such as direct electrochemistry of redox-proteins, genosensors and immunosensors, and AuNPs as enhancing platform for electrocatalysis and electrochemical sensors.  相似文献   

7.
A sensitive HPLC method with fluorescence detection was developed for the determination of bisphenol A (BPA) and bisphenol B (BPB) in human blood serum. The detection limits of the method were 0.18 and 0.20 ng/mL for BPA and BPB, respectively. A single‐step liquid–liquid extraction was used for the pre‐treatment of serum samples. The recoveries of BPA and BPB spiked to sera were 85.6 and 87.7%, respectively. The analyses of sera from both healthy and endometriotic women emphasized the absence of bisphenols in all the control cases (11 women), whereas BPA was found in 30 sera (51.7%) and BPB was found in 16 sera (27.6%) in the group of 58 patients with endometriosis; in nine of such sera BPA and BPB were present simultaneously. Only relatively to the sera quantitated, BPA concentrations ranged from 0.79 to 7.12 ng/mL (mean concentration 2.91 ± 1.74 ng/mL), whereas BPB concentrations ranged from 0.88 to 11.94 ng/mL (mean concentration 5.15 ± 4.16 ng/mL). Therefore, the presence of at least one of the two bisphenols was verified in a percentage as high as 63.8% in the sera from endometriotic women, suggesting the existence of a relationship between endometriosis and BPA and/or BPB exposure. Indeed, it is well known that bisphenols can work as xenoestrogens, owing to their structural similarity to natural and synthetic estrogens (e.g. estradiol and dietilstilbestrol). However, further studies are necessary to confirm this hypothesis and to assess the actual dose at which exposures to bisphenols are able to increase the sensitivity of the endometriotic cells to estradiol. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
2-Iodoxybenzoic acid (IBX) oxidation of bisphenol A (BPA) is described. The selective production of either the mono-o-quinone or the di-o-quinone can be controlled by IBX stoichiometry. Isolated yields of quinone were greater than 80%. Previous synthesis of BPA-di-o-quinone using a large excess of Fremy’s salt produced only trace amounts of product. In addition to o-quinone products, both mono- and dicatechols of BPA can synthesize in high yield and isolated without chromatography. The more stable catechols can be quantitatively converted back to o-quinones using silver oxide oxidation in either acetone or DMF. These one-pot reactions provide access to four different BPA metabolites in high yield and significant scale.  相似文献   

9.
In recent years, 3D printing of carbon-based conductive filaments has received growing attention for assembling electrodes to be used in a wide variety of electroanalytical devices and applications. Despite the large amount of work present in literature concerning the development of three-dimensional (3D) conductive structures, its potential as dry deposition method for assembling two-dimensional (2D) electrodes to be used in planar configuration is still largely unexplored. In fact, the possibility to rapidly change the geometry of the electrochemical circuits, associated with the reduction of waste and the absence of solvents, which are instead important components of ink and paste formulations, makes this strategy a valid green and efficient alternative to other deposition approaches such as screen-printing technology. We report here a rapid and solvent-free method for assembling fully 3D printed flexible planar electroanalytical platforms (3DEPs) to be used with microliters of liquid. At the same time, a novel protocol for the surface pre-treatment of 3D printed electrodes based on ultrasonication in aqueous NaOH solution followed by electrochemical activation using the same medium, is presented. In addition, the same procedure has proved to be efficient for cleaning the electrode surface after electrochemical passivation, thus confirming the validity of both time-efficient and environmentally-friendly assembling and activation/cleaning procedures developed which allow efficient and reusable electrodes to be produced. Finally, 3DEPs were tested by a proof-of-concept quantification of a commonly used food dye (Brilliant Blue, E-133) in commercial solutions used for homemade food coloring.  相似文献   

10.
Chao Lu  Jinge Li  Jin-Ming Lin 《Talanta》2010,82(4):1576-9063
Peroxymonocarbonate (HCO4) was produced by the online reaction of bicarbonate with hydrogen peroxide. A strong chemiluminescence (CL) was observed when HCO4 reacted with AuCl4 without any special CL reagent. When bisphenol A (BPA) was added to AuCl4-HCO4 CL system, the CL emission was inhibited significantly. This new CL system was developed as a flow-injection method for the determination of BPA. Under the optimum experimental conditions, the inhibited CL intensity was linearly related to the concentration of BPA from 0.3 to 80 μM (R = 0.9958). The detection limit of BPA was 0.08 μM. The relative standard deviation for 12 repeated measurements of 1.0 μM BPA was 2.9%. The interferences of some cationic ions can be removed by an online cation-exchange column. The applicability of the present CL system was demonstrated for the sensitive and selective determination of BPA in real samples (mineral water bottle, baby bottle, beverage bottle and polycarbonate container). Based on the CL spectrum, UV-visible adsorption spectra, and the quenching effect of reactive oxygen species scavengers, a possible CL mechanism was proposed.  相似文献   

11.
Microbial electrochemical systems utilize the electrochemical interaction between microorganisms and electrode surfaces to convert chemical energy into electrical energy, offering a promise as technologies for wastewater treatment, bioremediation, and biofuel production. Recently, growing research attention has been devoted to the development of microbial electrochemical sensrs as biosensing platforms. Microbial electrochemical sensors are a type of microbial electrochemical technology (MET) capable of sensing through the anodic or the cathodic electroactive microorganisms and/or biofilms. Herein, we review and summarize the recent advances in the design of microbial electrochemical sensing approaches with a specific overview and discussion of anodic and cathodic microbial electrochemical sensor devices, highlighting both the advantages and disadvantages. Particular emphasis is given on the current trends and strategies in the design of low-cost, convenient, efficient, and high performing METs with different biosensing applications, including toxicity monitoring, pathogen detection, corrosion monitoring, as well as measurements of biological oxygen demand, chemical oxygen demand, and dissolved oxygen. The conclusion provides perspectives and an outlook to understand the shortcomings in the design, development status, and sensing applications of microbial electrochemical platforms. Namely, we discuss key challenges that limit the practical implementation of METs for sensing purposes and deliberate potential solutions, necessary developments, and improvements in the field.  相似文献   

12.
In this research, the graphene with excellent dispersity is prepared successfully by introducing gold nanoparticle to separate the individual sheets. Various techniques are adopted to characterize the prepared graphene and graphene-gold nanoparticle composite materials. This fabricated new composite material is used as the support material to construct a novel tyrosinase based biosensor for detection of bisphenol A (BPA). The electrochemical performances of the proposed new enzyme biosensor were investigated by differential pulse voltammetry (DPV) method. The proposed biosensor exhibited excellent performance for BPA determination with a wide linear range (2.5 × 10−3–3.0 μM), a highly reproducible response (RSD of 2.7%), low interferences and long-term stability. And more importantly, the calculated detection limit of the proposed biosensor was as low as 1 nM. Compared with other detection methods, this graphene-gold nanoparticle composite based tyrosinase biosensor is proved to be a promising and reliable tool for rapid detection of BPA for on-site analysis of emergency BPA related pollution affairs.  相似文献   

13.
Kong FY  Xu MT  Xu JJ  Chen HY 《Talanta》2011,85(5):2620-2625
In this paper, gold nanoparticle-thionine-reduced graphene oxide (GNP-THi-GR) nanocomposites were prepared to design a label-free immunosensor for the sensitive detection of carcinoembryonic antigen (CEA). The nanocomposites with good biocompatibility, excellent redox electrochemical activity and large surface area were coated onto the glassy carbon electrode (GCE) surface and then CEA antibody (anti-CEA) was immobilized on the electrode to construct the immunosensor. The morphologies and electrochemistry of the formed nanocomposites were investigated by using scanning electron microscopy (SEM), ultraviolet-visible (UV-vis) spectrometry, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). CV and differential pulse voltammetry (DPV) studies demonstrated that the formation of antibody-antigen complexes decreased the peak current of THi in the GNP-THi-GR nanocomposites. The decreased currents were proportional to the CEA concentration in the range of 10-500 pg/mL with a detection limit of 4 pg/mL. The proposed method was simple, fast and inexpensive for the determination of CEA at very low levels.  相似文献   

14.
Abstract

Bisphenol A (BPA) is widely used as a color developer in thermal paper. Thermal paper is ubiquitous in daily life due to its use in cash register receipts, so opportunities for human contact abound. For this study, 10 blank cash register receipts were obtained from businesses in suburban Boston. BPA was extracted and analysis of concentration was performed using gas chromatograph/flame ionization detector. In some receipts, BPA was not detected but in others it was as high as 19 mg for a 12-inch long receipt, which is in line with concentrations indicated in patents. This study is intended to highlight the potential for human exposure to BPA as well as the ease with which exposure may be reduced through the use of BPA-free thermal paper.  相似文献   

15.
A multiple aromatic ether linked phthalonitrile was synthesized and characterized. The oligomeric phthalonitrile monomer was prepared from the reaction of an excess amount of bisphenol A with 4,4′‐difluorobenzophenone in the presence of K2CO3 as the base in an N,N‐dimethylformamide/toluene solvent mixture, followed by end capping with 4‐nitrophthalonitrile in a two‐step, one‐pot reaction. The monomer properties were compared to those of the known resin 2,2‐bis[4‐(3,4‐dicyanophenoxy)phenyl]propane after being cured in the presence of bis[4‐(4‐aminophenoxy)phenyl]sulfone. Rheometric measurements and thermogravimetric analysis showed that the oligomeric phthalonitrile resin maintained good structural integrity upon heating to elevated temperatures and exhibited excellent thermal properties along with long‐term oxidative stability. The ether‐linked phthalonitrile resin absorbed less than 2.5% water by weight after exposure to an aqueous environment for extended periods. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4136–4143, 2005  相似文献   

16.
实验研究了双酚A在土壤表面的吸附特征及在土壤悬浮液中的光降解.研究结果表明,双酚A在土壤表面的吸附为单分子的化学吸附,用Langmuir模型或Freundlich模型拟合时相关性较好.在高压汞灯(λ=300nm)照射下,双酚A在土壤悬浮液中能快速降解,降解速度随酸度的增大而加快.在此体系中双酚A光降解动力学遵循Langmuir-Hinshelwood(H-L)方程,在土壤量不超过10g/L的条件下,降解率随土壤量增加而增加,加入腐殖酸可以促进双酚A的光解,同时增大光照强度有利于双酚A的降解.  相似文献   

17.
各向异性金纳米粒子的制备及其在催化中的应用   总被引:1,自引:0,他引:1  
尽管有关金纳米粒子催化的研究工作很多,但其中大多数都是采用传统的浸渍法将金盐负载到载体上、共沉淀或沉积-沉淀法制得负载的纳米粒子,但这些方法并未吸收最新的纳米技术。最近,金催化剂的研究者开发了在胶态悬浮液中制取金属纳米粒子,然后进行固载,从而使得单金属和双金属催化剂的催化活性和形貌控制取得较大进展。另一方面,最近十年出现了金纳米粒子合成的高级控制技术,得到了许多各向异性的金纳米粒子,且很容易制得新的形貌,可以控制纳米粒子的表面原子配位数和光学特性(可调的等离子体带),这些都与催化密切相关。这些形貌包括纳米棒、纳米星、纳米花、树枝状纳米结构或多面体纳米粒子等。除了高度关注各向异性金纳米粒子的最新开发的制备方法和性质,本综述也清楚地总结了这些纳米粒子独特的催化性能,以及通过提供更高催化性能的金催化剂、控制暴露的活性位,以及热、电和光催化的鲁棒性和可调性,从而给多相催化领域带来令人惊奇的潜在变革。  相似文献   

18.
An o,o′‐methylene‐bridged bisphenol A (BPA) dimer 2 was synthesized by a one‐step reaction between formalin and excess BPA in the presence of a cation exchange resin in a polar aprotic solvent. Novel oligomeric polycyclic structures were synthesized by the reaction of reactive difunctional halides, methyl phosphonic dichloride, phenyl phosphonic dichloride, and dimethyl dichlorosilane with the BPA dimer under high‐dilution conditions. The yields of the polycyclics were quite high. NMR and matrix‐assisted laser desorption ionization–time of flight mass spectrometry (MALDI–TOF MS) were very useful in the characterization of the dimer and its oligomeric polycyclic analogs. These polycyclics can potentially be used as precursors for advanced thermosetting materials. A series of polycarbonate copolymers of BPA were synthesized by solution polycondensation of the methylene bridged dimer of BPA with triphosgene. Alternatively, the co‐polycarbonate containing crosslinkable moieties was synthesized by in‐situ polymerization of BPA and BPA dimer with triphosgene. The copolymers were characterized by GPC. TG/DTA and DSC were used to investigate the thermal properties of the co‐polycarbonates. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 927–935, 1999  相似文献   

19.
We synthesized a biothiol-sensitive nanoprobe by assembling gold nanoparticles with a novel redox-responsive silica (ReSi) matrix using dithiobis (succinimidyl propionate) and (3-aminopropyl) trimethoxysilane. Thin layer disulfide-bonded networks of the ReSi could differentially respond to extra- and intracellular glutathione in cancer cells within 30 min; furthermore, targeted cellular uptake could be monitored in situ by fluorescence recovery. Sigmoidal dose–response pattern of the nanoprobes presented in this study were attributed to the buried disulfide-linked 3D nanostructure of the ReSi nanoshell, optimized at an appropriate thickness, enabling not only buffering of small redox disturbances in the extracellular milieu but also the satisfied sensitivity for rapid redox sensing. Such a ReSi-functionalized gold nanoparticle-based nanoconjugate possesses the potential to serve as an effective intracellular drug carrier for future cancer theranostics.  相似文献   

20.
Pandey PC  Pandey AK 《The Analyst》2012,137(14):3306-3313
A nanocomposite of nickel hexacyanoferrate (NiHCF) was made with gold nanoparticles (AuNPs) of two different sizes (20 and 80 nm as AuNP(red) and AuNP(blue) respectively), synthesized via 3-glycidoxypropyltrimethoxysilane mediated reduction of 3-aminopropyltrimethoxysilane treated gold chloride and characterized by scanning electron microscopy and UV-VIS spectroscopy. The size of AuNPs was found to influence the two pairs of reversible voltammetric peaks of cation rich and cation deficient NiHCF. Such influence was identified from cyclic voltammetry of nanocomposite modified electrodes and applications during electrochemical sensing of two different analytes hydrazine and glutathione (GSH). Electrochemical sensing of hydrazine was based on cyclic voltammetry and differential pulse voltammetry (DPV) found as a function of sodium deficient NiHCF and was greatly amplified with increasing AuNPs nanogeometry. NiHCF alone is not an efficient electrode material for GSH analysis at the level required, however, the presence of AuNPs introduces size dependent sensitive and selective detection of GSH. GSH sensing based on linear sweep voltammetry (LSV) was found to be mediated by the potassium rich form of NiHCF redox couple in the presence of AuNPs. The results justified electrochemical detection of these analytes based on a mediated mechanism and support the role of AuNPs for facilitated electrochemical activity of NiHCF based systems as a function of nanogeometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号