首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two novel thermally activated delayed fluorescence (TADF) materials (PTZ-XTN and 2PTZ-XTN), with phenothiazine (PTZ) as an electron donor and xanthenone derivatives (XTN) as electron acceptors, were designed and theoretically investigated as blue OLED emitters. We used density functional theory (DFT) and time dependent DFT (TD-DFT) calculations to determine the electron distribution of HOMO and LUMO and the energy of the lowest singlet (S1) and the lowest triplet (T1) excited states. The large dihedral angle between the electron donor and the electron acceptor imparted a small spatial overlap between HOMO and LUMO in all the materials. This charge separation of the HOMO and LUMO leads to a small energy gap between the S1 state and T1 state, thereby leading to TADF emission. Among the materials studied, PTZ-XTN has the most suitable properties for a blue TADF OLED emitter, even though 2PTZ-XTN has the smallest energy gap between the S1 and T1 states.  相似文献   

2.
Novel starburst-type carbazole trimers SB-1 and SB-2 were developed as hole-transporting host materials for phosphorescent organic light-emitting diodes (PhOLEDs). The triplet levels (T1s) of SB-1 and SB-2 were determined as at 2.81 and 2.73 eV, respectively. Also, these compounds afforded stable amorphous thin films upon spin-coating, and thus it was found that they are applicable to solution-processed devices. Indeed, blue PhOLEDs were fabricated by a solution method using SB-1 and SB-2 as host materials, where better device performance was obtained for the SB-1-based device due to its higher-lying T1.  相似文献   

3.
The geometry structures, electronic structures, absorption, and phosphorescent properties of four Ir(III) complexes have been investigated using the density functional method. Calculations of ionization potential (IP) and electron affinity (EA) were used to evaluate the injection abilities of holes and electrons into these complexes. The result also indicates that the –CF3 substituent group on the ligand not only change the character of transition but affect the rate and balance of charge transfer. The lowest energy absorption wavelengths are located at 428 nm for 1a, 446 nm for 1b, 385 nm for 2a, and 399 nm for 2b, respectively, in good agreement with the energy gap (ΔEL-H) trend because the HOMO–LUMO transition configurations are predominantly responsible for the S0S1 transition. 2b has the 433 nm blue emission, which might be a potential candidate for blue emitters in phosphorescent dopant emitters in organic light emitting diodes (OLEDs). The study could provide constructive information for designing novel OLEDs materials in the future.

[Supplemental materials are available for this article. Go to the publisher's online edition of Molecular Crystals and Liquid Crystals to view the free supplemental file.]  相似文献   


4.
Abstract

Two new semiconducting organic small molecules, namely BDTQ-BDT(EH) and BDTQ-BDT(OC), were prepared by attaching electron accepting 2,3-didodecyl-6,7-difluoro-5,8-di(thiophen-2-yl)quinoxaline (DTQ) unit on 2,6-position of electron donating 4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene (BDT(EH)) and 4,8-bis(octyloxy)benzo[1,2-b:4,5-b']dithiophene (BDT(OC)) units. Molecule BDTQ-BDT(EH) showed higher thermal stability (5% weight loss temperature, Td “349 оC), slightly lower band-gap (Eg “2.10?eV) and deeper highest occupied molecular orbital energy level (HOMO “–5.36?eV) level compared to those (Td “336 оC, Eg “2.11?eV, and HOMO “–5.30?eV, respectively.) of the molecule BDTQ-BDT(OC). The organic solar cells (OSCs) made with the synthesized molecules as an electron donor and [6,6]-phenyl C71 butyric acid methyl ester (PC70BM) as an electron acceptor gave a maximum power conversion efficiency (PCE) of 1.20% and 0.83%, respectively, for BDTQ-BDT(EH) and BDTQ-BDT(OC). This study confirmed that the substituents attached on the 4,8-position of BDT unit greatly alter the properties of the resulting molecules.  相似文献   

5.
Abstract

The heat capacities of the title compound (C3H11,O—C6H4,- CH=N—C6H4,—C4H9, abbreviation 5O ? 4) with a purity of 99.92 mole percent have been measured with an adiabatic-type calorimeter between 11 and 393 K. The transition temperature and the enthalpy and entropy of phase transition for stable crystal → SG, SG → N and N → isotropic liquid were T c = 299.69 K/ΔH = 22.68 kJ mol?1/ΔS = 75.70 JK?1 mol?1, 325.72/7.11/21.79 and 342.48/1.78/5.22, respectively. The crystal which melts at 285.5 K is a metastable modification. The SA phase hitherto reported in between SG and N does not exist. The glassy So state was realized by rapid cooling of the specimen from the So phase. The molar enthalpy of the glassy SG state at 0 K was by (10.1±0.1) kJ mol?1 higher than that of the stable crystalline state and the residual entropy of the glassy state was (9.40±0.83) JK?1 mol?1. The relaxational heat-capacity anomaly was observed from as low as 100 K and double glass transition phenomenon occurred around 200 K; a quite unusual phenomenon which has never been observed for the glassy states of nematic and cholesteric liquid crystals. The present results give a fair evidence that the unusual glass transition phenomenon previously found for the SG state of 6O?4 (a homologous compound) is not exceptional at all but common to the smectic glasses; at least common to the glassy SG states. Two possible origins responsible for the double glass transitions have been discussed.  相似文献   

6.
《Journal of Non》2006,352(42-49):4656-4664
Johari–Goldstein(or JG) relaxation of rigid molecular solute acetone in various glass forming solvents was studied, and compared with the relaxation of acetone molecules occurring in the cages of acetone clathrate hydrate. The activation energy (ΔEβ) of the JG-process for the solute increases with a decrease in the size of the cage of the host (solvent) matrix, and increase in interaction of the solute molecules with the solvent. We have also studied the sub-Tg relaxation(s) due to some flexible molecular solutes, viz. some esters of phthalic acid. These solutes in isopropylbenzene matrix exhibit only one sub-Tg relaxation, whereas in o-terphenyl matrix exhibit an additional sub-Tg process which may be identified with JG type of relaxation. This observation lead us to the conclusion that the β-process observed in the glassy states of these pure solutes is predominantly intramolecular in nature.  相似文献   

7.
8.
The structures of nCB (n = 6 & 7 where n is the number of carbon atoms in the alkyl chain) have been optimized using the Becke3-Lee-Yang-Parr (B3LYP) hybrid functional with 6–31G+(d) basis set using the crystallographic geometry as input. The electronic structures of the dimer molecules have been computed using the optimized geometries. The spectra of the dimer molecules have been calculated by employing the DFT method. The features of electronic transitions and excited states have been calculated via configuration interaction singles (CIS) with the semiempirical Hamiltonian Zerner intermediate neglect of differential overlap (ZINDO). The photo sensitivity of liquid crystalline alkyl cyanobiphenyl has been presented on ultraviolet (UV) absorption based approach through Density functional theory (DFT) calculations. The structural and electrochemical properties such as HOMO (H), LUMO (L), and energy gap (Eg = EL – EH) have been investigated. A comparison of dimers during the different modes of interactions suggests an absorption maxima at longer wavelength for 7CB, indicating the high photo sensitivity. Further, the 6CB dimers exhibit a lower band gap; hence its conductivity is high in comparison with the 7CB dimers.  相似文献   

9.
Thin films of InSe were obtained by thermal evaporation techniques on glass substrates maintained at various temperatures (Tsb = 30°, 400°C). X‐ray diffraction analysis showed the occurrence of amorphous to polycrystalline transformation in the films deposited at higher substrate temperature (400°C). The polycrystalline films were found to have a hexagonal lattice. Compositions of these films have been characterized by EDAX and the surface analysis by scanning electron microscopy. Optical properties of the films, investigated by using spectrophotometer transmittance spectra in the wavelength range (300 – 1100 nm), were explained in terms of substrate temperatures. Films formed at room temperature showed an optical band gap (Egopt) 1.56 eV; where as the films formed at 400°C were found to have a Egopt of 1.92 eV. The increase in the value of Egopt with Tsb treatment is interpreted in terms of the density of states model as proposed by Mott and Davis. The analysis of current ‐Voltage characteristics, based on space charge limited currents (SCLC) measurements, confirms the exponential decrease of density of states from the conduction band edge towards the Fermi level for both the amorphous and polycrystalline films. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Abstract

It is well established that crystals of charge transfer (CT) complexes formed between aromatic donors and acceptors are built up of linear stacks of closely packed molecules. There are two main types of CT crystal structure, (i) a parallel arrangement of linear stacks made up of the individual component molecules, AAAA…DDDD… and (ii) a parallel arrangement of linear stacks made up of alternating molecules, ADADA… In each case it is to be expected that the intermolecular forces between the face to face packed molecules in each stack are far greater than those forces between stacks. A considerable anisotropy in physical properties which are a strong function of intermolecular interactions is a natural result of these crystal structures. Such anisotropy has been reported in the few crystals of the ADAD structure which have been examined, for example, in triplet exciton motion in biphenxl2 and anthracene tetracyanobenzene (TCNB) complexes3,4 and in charge carrier mobilities μ in anthracene5 and phenthrene-pyromellitic-acid-dianhydride6 as well as anthracene-trinitrobenzene7. Carrier mobilities which were reported were all low, < 0.1 cm2/V sec., and though the major interesting questions were posed, such as what is the effect of different donors on μ?; or are there separate conduction and valence bands for acceptors and donors?; the dearth of mobility data on a range of materials leaves these questions unanswered. We have recently measured the mobilities of holes in several TCNB complexes as a first step towards understanding carrier transport in such materials. These are a particularly interesting series of materials in that triplet motion is said to be primarily two dimensional in anthracene TCNB3, and unidimensional in biphenyl TCNB2. Since the transport of charge, like triplet exciton motion, is dominated by exchange interactions, and since CT triplet  相似文献   

11.
The paper deals with conductivity, thermoelectric power and field effect measurements on amorphous Ge specimens prepared by the decomposition of germane gas in a rf glow discharge. Substrate temperatures Td of 300, 400 and 500 K were used during deposition. The sign of the thermoelectric power S is negative throughout the temperature range investigated (200–500 K). Above 300 K, the conductivity activation energy in specimens prepared at Td = 500 K lies between 0.40 and 0.43 eV; it is equal to the gradient of the S versus 1/T curves, suggesting transport in the extended electron states. Below room temperature there is an increasing contribution in all specimens from electron hopping transport in localized states lying about 0.25 eV below ?C. Both conductivity and thermoelectric power results can be interpreted satisfactorily in terms of these two current paths. Hopping at the Fermi level has not been observed. The preliminary field effect measurements indicate that, as in amorphous Si, ?f lies near a density of state minimum. The density of states at ?f is appreciably higher than that in similarly prepared Si specimens.  相似文献   

12.
The proximity (d12) between a diffusing species and its host crystal necessary for a successful diffusion for diffusion-controlled crystallization of barium tungstate from sodium tungstate melts in platinum crucibles was estimated. These distances increased with increased cooling rates (RT) and crystallization temperatures (T0). Energy (E), enthalpy (ΔHa), entropy (ΔSa) and free-energy (ΔGa) of activation and the pre-exponential factor (k0) were evaluated using an ordinary Arrhenius equation kD1 = k0eE/RT, where kD1 was the diffusion rate-constant. These parameters were virtually unaffected by the changes in T0 and RT.  相似文献   

13.
螺芴类空穴传输材料因优异的光电性能而备受关注。为了探究其电荷传输机制,本文采用密度泛函理论研究了三种螺芴类小分子空穴传输材料的电子结构、重组能和电子耦合。结合Marcus电荷转移理论,精确计算了所有小分子的载流子迁移率,并与实验数据进行了比较。结果表明,X60和HT2分子的空穴迁移率与实验数据吻合良好,处于同一数量级,说明利用该理论模型精确计算分子的空穴迁移率具有一定的可行性。此外,ST2的空穴迁移率为1.82×10-4 cm2·V-1·s-1,且具有良好的稳定性,说明对螺核杂原子的修饰可进一步提升空穴传输材料的性能。这为开发高效的空穴传输材料提供了重要策略。  相似文献   

14.
C Viger  C Vautier 《Journal of Non》1974,13(3):363-371
In order to determine the recombination lifetime τr we have studied the photoconduction under pulsed light in amorphous selenium. Experimental results, relative to the variation of τr with temperature, enable us to calculate the parameters which characterized the recombination centers: capture cross sections Sn and Sp (and their variations with T), localization of the level Er, density of states Nr.  相似文献   

15.
Energy (E), enthalpy (ΔHa), entropy (ΔSa) and free-energy (ΔGa) of activation and the pre-exponential factor (k0) of the ordinary Arrhenius equation kDl = k0eE/RT were estimated for diffusion-controlled crystal growth of SrWO4 from Na2WO4 melts. E increased slightly with increased cooling rates (RT). k0 was parallel to kDl and increased with increasing RT. ΔHa, ΔSa, and ΔGa did not change with the changes in RT and crystallization temperature (T0). The distance (d12), between a diffusing particle and its host necessary for a successful diffusion, was estimated. Such distances slightly increased with T0 and RT.  相似文献   

16.
Abstract

In the MxPS3 and M1?xM'xPS3 systems, the P2S6 cluster contributes to the poor electrical conductivity for the compounds in which the energy level of the metal 3d orbital is deeper than those of the P, S 3p orbitals. For the compounds in which metal 3d orbital is closed to P and S 3p orbitals and has mixed valency, the induced mixed valency of P2S6, cluster and/or hopping mechanism contribute to the electrical conductivity. In the organic electron donor intercalation into MxPS3 and M1?xM'xPS3 compounds, the new intercalation reaction is discovered, in which formation of tris-complexes of metal ions with guest molecules occurs in the host interlayer.  相似文献   

17.
Abstract

Quantum confined structure-based solar cell is promising two folds increment of the maximum theoretical photovoltaic conversion efficiency i.e., > 60% in comparison with that of the bulk analogs e.g., silicon-based and dye sensitized solar cell (ca. 32% of maximum theoretical efficiency). The key to the significant increment is the ability of the fluorophore to exhibit multiple exciton generation upon absorption photon with sufficient energy. Small size of lead chalcogenides (PbS, PbSe, PbTe) crystals have been reported and proven experimentally could exhibit this unique property. We have investigated few clusters of narrow bandgap lead chalcogenides nanocrystals i.e., (PbS)n, (PbSe)n and (PbTe)n; which n?=?4 - 80. The cluster models were optimized using quantum chemical calculations to the lowest energy geometry at B3LYP/lanl2dz level of theory. The predicted realistic (PbS)80, (PbSe)50, and (PbTe)74 clusters with the size, and bandgap of 4.58?nm (2.00?eV), 4.03?nm (1.51?eV), and 4.84?nm (1.55?eV) are smaller than that of their exciton Bohr radius i.e., 5.01, 13.1, and 24.8?nm respectively. Therefore, the occurrence of multi exciton generation in the clusters is hypothesized upon absorption of photon with Ephoton = 2Eg.  相似文献   

18.
The main purpose of this research is to investigate computationally the structural, thermochemical and electronic properties in complexation process of dichloride {N-[(5-methylthiophen-2-yl)methylidene]?2-(pyridine-2-yl)ethanamine-κ2N,N′}palladium(II) complex. In the first step, we have concentrated on comparative survey of ability of density functional theory (DFT) and also semi-empirical approaches to reproduce the crystal structure of palladium(II) complex. Comparison of our calculated structural parameters of aforementioned complex with the available crystallographical data reveals that both functionals (B3LYP and M06) can well-reproduce x-ray structure of the complex with a near accuracy while PM6-D2 semi-empirical calculated values are not in a reliable agreement with the crystallographical data.

In the next step, we have shown the thermodynamical superiority in using THF as a polar solventin complexation reaction via polarized continuum model (PCM) computations which is in confirmation with experimental observations. Additionally, the bond orders of some selected key bonds in C13H14N2Sligand andPdCl2(C13H14N2S) complex have been evaluated comparatively to analyze the electronic behavior of coordination.

Finally, we focused on topological analysis of electron density function via quantum theory of atoms in molecules (QTAIM) approach to explore the strength and nature of metal-ligand interactions on bond and ring critical points (BCPs).Strictly speaking, QTAIM calculations have been performed to determine the electronic density, its Laplacian and other electronic energy density indicators on some key BCPs to interpret the electronic features of complexation.  相似文献   

19.
The vibrational spectra of lower homologous series of nematogenic p-n-alkylbenzoic acids (nBAC) with 4 (4BAC) and 5 (5BAC) carbon atoms in the alkyl chain have been investigated using the Density Functional Becke3-Lee-Yang-Parr (B3LYP) level with the basis set 6–31++G(d.p) and Hartree Fock (HF) with the same basis set. The observed vibrational spectra has been resolved and assigned in detail for comparision with both the molecules. These results indicate that DFT and HF values are slightly different at both the level. A comparision of electronic properties such as HOMO (EHOMO), LUMO (ELUMO) energies, energy gap (Eg), ionization potential (I), electron affinity (A), electro negativity (χ), chemical hardness (η), electronic chemical potential (μ), electrophilicity index (ω), and softness (S) has been made. It has been observed that decrement occurred in the energy band gap value of isolated molecule with increment in alkyl chain length. This provides valuable information regarding the stability of liquid crystal materials.  相似文献   

20.
《Journal of Non》2006,352(21-22):2082-2089
We report an experimental study on the absorption and luminescence spectra of oxygen deficient point defects in Sn-doped silica. The absorption band at 4.9 eV (B band) and the two related photoluminescence bands at ∼4.2 eV (singlet–singlet emission, S1  S0) and at ∼3.2 eV (triplet–singlet emission, T1  S0), linked by a thermally activated T1  S1 inter-system crossing process (ISC), are studied as a function of temperature from 300 to 20 K. This approach allows us to investigate the dynamics properties of the matrix in the surroundings of the point defects and the effects of local disorder on the two relaxation processes from S1: the radiative channel to S0 and the ISC process to T1. We observe that the S1  S0 decay kinetics at higher temperatures do not follow a single-exponential law and the ISC rate shows a temperature dependence that cannot be rationalized by a single activation process, suggesting the presence of a complex landscape of configurational energies. The comparison with analogous data for Ge-doped silica reveals that the local dynamics of the matrix, the defect–matrix electron–phonon coupling, and the ISC rate dispersion are not substantially modified by the isoelectronic and isostructural substitution Sn–Ge. On the contrary, the Sn-related ISC process is ∼5 times more efficient than the Ge-related one. Since we observed that the coupling with local phonons increases the ISC efficiency by four order of magnitudes in the investigated temperature range, the reported data strongly suggest that, even if the presence of the spin–orbit coupling is needed for ISC processes, it has not play a primary role in the ISC processes in silica, where it acts as a homogenous and temperature-independent scale factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号