首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have constructed a multidimensional free energy surface of nucleation of the liquid phase from the parent supercooled and supersaturated vapor phase near the gas-liquid spinodal. In particular, we remove the Becker-Doring constraint of having only one growing cluster in the system. Close to the spinodal, the free energy, as a function of the size of the largest cluster, develops surprisingly a minimum at a subcritical cluster size. It is this minimum at intermediate size that is found to be responsible for the barrier towards further growth of the nucleus at large supersaturation. An alternative free energy pathway involving the participation of many subcritical clusters is found near the spinodal where the growth of the nucleus is promoted by a coalescence mechanism. The growth of the stable phase becomes collective and spatially diffuse, and the significance of a "critical nucleus" is lost for deeper quenches.  相似文献   

2.
Lapo Casetti 《Physica A》2007,384(2):318-334
The phenomenon of partial equivalence of statistical ensembles is illustrated by discussing two examples, the mean-field XY and the mean-field spherical model. The configurational parts of these systems exhibit partial equivalence of the microcanonical and the canonical ensemble. Furthermore, the configurational microcanonical entropy is a smooth function, whereas a nonanalytic point of the configurational free energy indicates the presence of a phase transition in the canonical ensemble. In the presence of a standard kinetic energy contribution, partial equivalence is removed and a nonanalyticity arises also microcanonically. Hence in contrast to the common belief, kinetic energy, even though a quadratic form in the momenta, has a nontrivial effect on the thermodynamic behaviour. As a by-product we present the microcanonical solution of the mean-field spherical model with kinetic energy for finite and infinite system sizes.  相似文献   

3.
付东  廖涛 《中国物理》2007,16(11):3475-3482
The excess Helmholtz free energy functional for nonpolar chain-like molecules is formulated in terms of a weighted density approximation (WDA) for short-range interactions and a Weaks Chandler Andersen (WCA) approximation and a Barker Henderson (BH) theory for long-range attraction. Within the framework of density functional theory (DFT), vapour liquid interracial properties including density profile and surface tension, and vapour-liquid nucleation properties including density profile, work of formation and number of particles are investigated for spherical and chain- like molecules. The obtained vapour liquid surface tension and the number of particles in critical nucleus for Lennard- Jones (L J) fluids are consistent with the simulation results. The influences of supersaturation, temperature and chain length on vapour liquid nucleation properties are discussed.[第一段]  相似文献   

4.
ABSTRACT

A recently developed method where one analyses the finite size effects associated with liquid–solid phase equilibria including vapour–crystal coexistence is briefly reviewed. It is shown that the estimation of the chemical potential of the vapour surrounding the crystal as function of the crystal volume yields information on the bulk coexistence conditions, when an extrapolation to the thermodynamic limit is performed. Estimating the pressure of the fluid surrounding the crystal nucleus in the finite simulation box and the volume of this nucleus that coexists with the fluid in thermal equilibrium, an estimate for the total surface excess free energy can be obtained, which to a very good approximation is independent of the size of the simulation box. The free energy barrier against homogeneous nucleation of crystals thus can be estimated as a function of the nucleus volume. Monte Carlo simulations for the soft effective Asakura–Oosawa model of colloid-polymer mixtures which form face-centered cubic colloidal crystals are used to exemplify this method, computing the surface excess free energy of these crystals over a wide range of crystal volumes, without the need to characterise the non-spherical crystal shape. A possible extension of these concepts to heterogeneous nucleation is also briefly discussed.  相似文献   

5.
A numerical approach based on the string method is developed to study nucleation of ordered phases in first-order phase transitions. Among other things, this method allows an efficient computation of the minimum energy path (MEP) during the nucleation process. The MEP provides information about the size, shape and free energy barrier of the critical nucleus. To improve the efficiency of the string method, a special initialization process is proposed. Constraints from physical models are treated using two methods, a generalized coordinates method and a projection method. Strategies for choosing the computational domain and defining the nucleus boundary are also introduced. The validity of our approach is illustrated by two nontrivial examples from soft condensed matter physics, namely the nematic–isotropic transition of liquid crystals and the ordered-to-ordered phase transition of diblock copolymers.  相似文献   

6.
The mechanism for homogeneous nucleation of the liquid phase in Lennard-Jones solids is studied by combining the Landau free energy approach with some of the methodology developed to characterise transition path ensembles. The second-order bond orientational order parameter, Q 6 which indexes the overall degree of crystalline order, is shown to provide a dynamically significant collective coordinate describing the melting process. Trajectories generated from configurations sampled in the vicinity of the maximum in the Landau free energy curve, F(Q 6), are shown to have equal likelihood of teminating in either the solid or liquid-like free energy minima. It is also demonstrated that Q 6 is necessary but not sufficient as a dynamical coordinate to describe melting and it is necessary to explore possiblities for additional coordinates which are critical for initiating melting. Our sudy suggests that the additional coordinates for describing the melting process would be some type of localised defect, much smaller in spatial extent than the size of the critical nucleus predicted by classical nucleation theory.   相似文献   

7.
Abstract

The aim of this paper is to investigate the consequences of atomic size mismatch on the thermodynamics and the topology of binary phase diagrams of face centred cubic alloys. Simple pairwise interatomic potentials with few controlling parameters are used to identify general tendencies. Thermodynamic states are computed by Monte Carlo simulations on a non-rigid lattice. A special attention has been paid to the comparison between calculations in the canonical ensemble, where composition–temperature phase diagrams are determined through van der Waals loops, and in the grand canonical ensemble, where phase diagrams are computed using an interface migration technique. It is shown that these two procedures lead essentially to the same incoherent phase diagram. In the case of phase separating systems, we argue that the introduction of a size mismatch leads to a shrinkage of the solid solution domain and that the asymmetry of the miscibility gap is essentially controlled by the anharmonicity of the heteroatomic potential. Finally, in the case of ordering systems, we show that the asymmetry of the phase diagram may be due to the anharmonicity of the pair potentials or to the differences between their curvatures, the former effect being dominant if the atomic size mismatch is large.  相似文献   

8.
An Einstein model is used to calculate the internal vibrational free energy of approximately spherical fcc crystallites as a function of crystallite size at T/θ = 1. It is found that the free energy per surface atom does not become convergent until a size of about 3 × 107 atoms is reached. The excess free energy at convergence is used to define the macroscopic surface tension for use in the capillarity approximation. The internal free energy of microcrystallites containing of the order of 100 atoms is fortuitously well described by the capillarity approximation. A good estimate of the total free energy of the microcrystallite (nucleus) is obtained from the capillarity approximation only by adding the contributions from free translation and rotation and the replacement partition function.  相似文献   

9.
Monte Carlo simulations of water vapor nucleation on a perfect crystal surface and on a surface with defects are performed. Mass exchange with the vapor phase is modeled by using an open ensemble. Cluster-substrate interaction is described in terms of conventional atom-atom potentials. The Hamiltonian of the system includes expressions for electrostatic, polarization, exchange, and dispersion interactions. The Gibbs free energy and work of adsorption are calculated by Monte Carlo simulation in the bicano?nical ensemble. The microscopic structure of nuclei is analyzed in terms of pair correlation functions. Periodic boundary conditions are used to simulate an infinite substrate surface. Molecule-substrate and molecule-molecule long-range electrostatic interactions are calculated by summing the Fourier harmonics of the electrostatic potential. Dispersion interactions are calculated by direct summation over layers of unit cells. Nucleation on a surface with matching structure follows a layer-by-layer mechanism. The work of adsorption per molecule of a monolayer on the substrate surface has a maximum as a function of nucleus size. The steady rate of nucleation of islands of supercritical size is evaluated. The work of adsorption per molecule for layer-by-layer film growth is an oscillating function of cluster size. As a function of layer number, it has a minimum depending on the vapor pressure. The electric field generated by a microscopic surface protrusion destroys the layered structure of the condensate and eliminates free-energy nucleation barriers. However, point lattice defects do not stimulate explosive nucleation.  相似文献   

10.
The exponential family of random graphs is one of the most promising class of network models. Dependence between the random edges is defined through certain finite subgraphs, analogous to the use of potential energy to provide dependence between particle states in a grand canonical ensemble of statistical physics. By adjusting the specific values of these subgraph densities, one can analyze the influence of various local features on the global structure of the network. Loosely put, a phase transition occurs when a singularity arises in the limiting free energy density, as it is the generating function for the limiting expectations of all thermodynamic observables. We derive the full phase diagram for a large family of 3-parameter exponential random graph models with attraction and show that they all consist of a first order surface phase transition bordered by a second order critical curve.  相似文献   

11.
In the extended phase space, we investigate the rainbow gravity-corrected thermodynamic phenomena and phase structure of the Schwarzschild black hole surrounded by a spherical cavity. The results show that rainbow gravity has a very significant effect on the thermodynamic phenomena and phase structure of the black hole. It prevents the black hole from total evaporation and leads to a remnant with a limited temperature but no mass. Additionally, we restore the PV criticality and obtain the critical quantities of the canonical ensemble. When the temperature or pressure is smaller than the critical quantities, the system undergoes two Hawking-Page-like phase transitions and one first-order phase transition, which never occurs in the original case. Remarkably, our findings demonstrate that the thermodynamic behavior and phase transition of the rainbow SC black hole surrounded by a cavity in the extended phase space are analogous to those of the Reissner–Nordström anti-de Sitter black hole. Therefore, rainbow gravity activates the effect of electric charge and cutoff factor in the evolution of the black hole.  相似文献   

12.
Exact solutions are obtained for the mean-field spherical model, with or without an external magnetic field, for any finite or infinite number N of degrees of freedom, both in the microcanonical and in the canonical ensemble. The canonical result allows for an exact discussion of the loci/ of the Fisher zeros of the canonical partition function. The microcanonical entropy is found to be nonanalytic for arbitrary finite N. The mean-field spherical model of finite size N is shown to be equivalent to a mixed isovector/isotensor σ-model on a lattice of two sites. Partial equivalence of statistical ensembles is observed for the mean-field spherical model in the thermodynamic limit. A discussion of the topology of certain state space submanifolds yields insights into the relation of these topological quantities to the thermodynamic behavior of the system in the presence of ensemble nonequivalence.  相似文献   

13.
We study the maximization of the Tsallis functional at fixed mass and energy in the Hamiltonian Mean Field (HMF) model. We give a thermodynamical and a dynamical interpretation of this variational principle. This leads to q-distributions known as stellar polytropes in astrophysics. We study phase transitions between spatially homogeneous and spatially inhomogeneous equilibrium states. We show that there exists a particular index q c = 3 playing the role of a canonical tricritical point separating first and second order phase transitions in the canonical ensemble and marking the occurence of a negative specific heat region in the microcanonical ensemble. We apply our results to the situation considered by Antoni and Ruffo [Phys. Rev. E 52, 2361 (1995)] and show that the anomaly displayed on their caloric curve can be explained naturally by assuming that, in this region, the QSSs are polytropes with critical index q c = 3. We qualitatively justify the occurrence of polytropic (Tsallis) distributions with compact support in terms of incomplete relaxation and inefficient mixing (non-ergodicity). Our paper provides an exhaustive study of polytropic distributions in the HMF model and the first plausible explanation of the surprising result observed numerically by Antoni and Ruffo (1995). In the course of our analysis, we also report an interesting situation where the caloric curve presents both microcanonical first and second order phase transitions.  相似文献   

14.
The classical instability of a charged spherical droplet is reconsidered in the presence of counterions. An ensemble of such droplets is studied within a simplified cell model. Screening of the electric field by the counterions is found to increase the equilibrium droplet size. Furthermore, if the ions can enter the droplet, a first-order phase transition occurs upon increasing Bjerrum length, surface tension or droplet density, leading to a phase separation. Simple scaling properties of the free energy give the shape of the phase boundary and show the system to be scale-invariant there. Pearl-necklace structures of hydrophobic polyelectrolytes are discussed as an application. Received 30 August 2001  相似文献   

15.
We analyze the effects of thermal fluctuations on a regular black hole (RBH) of the non-minimal Einstein–Yang–Mill theory with gauge field of magnetic Wu–Yang type and a cosmological constant. We consider the logarithmic corrected entropy in order to analyze the thermal fluctuations corresponding to non-minimal RBH thermodynamics. In this scenario, we develop various important thermodynamical quantities, such as entropy, pressure, specific heats, Gibb’s free energy and Helmholtz free energy. We investigate the first law of thermodynamics in the presence of logarithmic corrected entropy and non-minimal RBH. We also discuss the stability of this RBH using various frameworks such as the \(\gamma \) factor (the ratio of heat capacities), phase transition, grand canonical ensemble and canonical ensemble. It is observed that the non-minimal RBH becomes globally and locally more stable if we increase the value of the cosmological constant.  相似文献   

16.
We discuss a subtlety involved in the calculation of multifractal spectra when these are expressed as Legendre-Fenchel transforms of functions analogous to free energy functions. We show that the Legendre-Fenchel transform of a free energy function yields the correct multifractal spectrum only when the latter is wholly concave. If the spectrum has no definite concavity, then the transform yields the concave envelope of the spectrum rather than the spectrum itself. Some mathematical and physical examples are given to illustrate this result, which lies at the root of the nonequivalence of the microcanonical and canonical ensembles. On a more positive note, we also show that the impossibility of expressing nonconcave multifractal spectra through Legendre-Fenchel transforms of free energies can be circumvented with the help of a generalized free energy function, which relates to a recently introduced generalized canonical ensemble. Analogies with the calculation of rate functions in large deviation theory are finally discussed. PACS numbers: 05.45.Df, 64.60.Ak, 65.40.Gr  相似文献   

17.
A large deviation technique is used to calculate the microcanonical entropy function s(v,m) of the mean-field ϕ4-model as a function of the potential energy v and the magnetization m. As in the canonical ensemble, a continuous phase transition is found. An analytical expression is obtained for the critical energy vc(J) as a function of the coupling parameter J.  相似文献   

18.
We study the phenomenon of real space condensation in the steady state of a class of mass transport models where the steady state factorises. The grand canonical ensemble may be used to derive the criterion for the occurrence of a condensation transition but does not shed light on the nature of the condensate. Here, within the canonical ensemble, we analyse the condensation transition and the structure of the condensate, determining the precise shape and the size of the condensate in the condensed phase. We find two distinct condensate regimes: one where the condensate is gaussian distributed and the particle number fluctuations scale normally as L 1/2 where L is the system size, and a second regime where the particle number fluctuations become anomalously large and the condensate peak is non-gaussian. Our results are asymptotically exact and can also be interpreted within the framework of sums of random variables. We further analyse two additional cases: one where the condensation transition is somewhat different from the usual second order phase transition and one where there is no true condensation transition but instead a pseudocondensate appears at superextensive densities. PACS numbers: 05.40.-a, 02.50.Ey, 64.60.-i.  相似文献   

19.
The liquid-vapor interface of a confined fluid at the condensation phase transition is studied in a combined hydrostatic/mean-field limit of classical statistical mechanics. Rigorous and numerical results are presented. The limit accounts for strongly repulsive short-range forces in terms of local thermodynamics. Weak attractive longer-range ones, like gravitational or van der Waals forces, contribute a self-consistent mean potential. Although the limit is fluctuationfree, the interface is not a sharp Gibbs interface, but its structure is resolved over the range of the attractive potential. For a fluid of hard balls with –r –6 interactions the traditional condensation phase transition with critical point is exhibited in the grand ensemble: A vapor state coexists with a liquid state. Both states are quasiuniform well inside the container, but wall-induced inhomogeneities show up close to the boundary of the container. The condensation phase transition of the grand ensemble bridges a region of negative total compressibility in the canonical ensemble which contains canonically stable proper liquid-vapor interface solutions. Embedded in this region is a new, strictly canonical phase transition between a quasiuniform vapor state and a small droplet with extended vapor atmosphere. This canonical transition, in turn, bridges a region of negative total specific heat in the microanonical ensemble. That region contains subcooled vapor states as well as superheated very small droplets which are microcanonically stable.  相似文献   

20.
The central collision of 40Ar and 208Pb is studied considering the ellipsoidal deformations and isovector dipole mode of motion in the approaching phase. The collective energy dissipation is suggested to originate from the Fermi surface deformation which is treated as a kinematically independent mode of motion within the canonical Lagrange-Rayleigh dynamics. The possible extensions of the approach are discussed. The potential energy surface, calculated using the generalized (folded) surface potential, is studied. The saddle point in the potential energy surface lying at the border of strongly deformed compact configurations is located. The potential energy at this point is about 10MeV smaller than that of the ions touching each other in the spherical shape. The examination of trajectories followed by the system in its evolution shows that the inertia forces strongly hinder the motion of ions along the potential energy valley. The collective energy dissipated during the approach is found to be smaller than the difference in the potential energies at saddle point and at the touching configuration of unpolarized ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号