首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The phenolic epoxy resin (F51) was siliconized by KH550 and the product was named as FKS. A hydroxyl-terminated polydimethylsiloxane (HTPDMS) which was modified with FKS was prepared. The siliconization reaction ensured a segment of siloxane on the side chain of F51. FT-IR and 1H-NMR were employed to confirm the chemical structure of FKS. Morphology observations revealed that the enhancement of mechanical properties of the silicone rubber systems can be attributed to good compatibility between FKS and silicone rubber matrix. Thermogravimetric analysis showed that the residual yield at 800?°C of silicone rubber composites increased significantly when compared with that of neat HTPDMS. The mechanical properties demonstrated that tensile strength and elongation at break of silicone rubber system increased distinctly after modification, especially when 30 phr siliconized F51 were added to the silicone rubber. Shear strength was improved gradually with the addition of FKS. These above observations emphasize the vital effect of FKS on the behavior of modified HTPDMS.  相似文献   

2.
Hexagonal boron nitride (BN) platelets, also known as white graphite, are often used to improve the thermal conductivities of polymeric matrices. Due to the poor interfacial compatibility between BN platelets and polymeric matrices, in this study, polyrhodanine (PRd) was used to modify BN platelets and prepared functionalized BN-PRd platelets, thereby enhancing the interfacial interaction between the thermal conductive filler and polymeric matrix. Then, BN-PRd platelets were dispersed into the nitrile butadiene rubber (NBR) matrix to yield high thermally conductive composites. The presence of N? C═S groups in PRd allowed the combination of PRd and NBR chains containing stable covalent bonds via vulcanization reaction. The thermal conductivity of the as-prepared 30 vol% BN-PRd/NBR composite reached 0.40 W/mK, representing an increment of 135% over pure NBR (0.17 W/mK). In addition, the largest tensile strength of NBR composite containing 30 vol% BN-PRd platelets was 880% times of pure NBR. The 30 vol% BN-PRd/NBR composite also displayed a relatively high dielectric constant (9.35 at 100 Hz) and a low dielectric loss tangent value (0.07 at 100 Hz), indicating their usefulness as dielectric flexible materials of microelectronics. In sum, the simplicity and good efficiency of formation of covalent bonds between boron nitride and rubber chains look very promising for large-scale industrial production of high thermally conductive composites.  相似文献   

3.
4.
Effect of homologous of nano-composites on the thermal degradation of the silicone resin was researched based on graphene oxide (GO)/polyhedral oligomeric silsesquioxane (POSS). First, the amino-POSS was grafted onto the GO surface (GO/POSS) via the amide bond. Second, GO/POSS was incorporated into the silicone with active epoxy group via chemistry grafting. The reaction kinetics of the thermal decomposition of the epoxy–silicone resin based on nano-composite homologous effect is developed. The initial decomposition temperature of the modified silicone resin is improved by 77.2°C. At high temperatures, GO/POSS-modified silicone molecular end forms homologous nano-structures, which can restrain silicone future degradation. The developed strategy has potential to restrain the degradation of the polymer molecular chain.  相似文献   

5.
In this report, we demonstrate that both the thermal stability and the thermal conductivity of bromobutyl rubber (BIIR) nanocomposites could be improved by incorporating the ionic liquids (ILs) modified graphene oxide (GO-ILs) using a solution compounding method. The structure, thermal stability and thermal conductivity of this newly modified BIIR nanocomposites were systematically analyzed and studied. The X-ray diffraction (XRD) analysis of GO-ILs showed that ILs had been effectively intercalated into the interlayer of GO, which was found to be able to raise the exfoliation degree of GO. The increased exfoliation degree facilitated a good dispersion of GO-ILs in the BIIR matrix, as revealed by the scanning electron microscope (SEM) images. The glass transition temperatures (Tg) of the GO-ILs/BIIR nanocomposites were also raised by the addition of GO-ILs, which indicates the strong interfacial adhesion between GO-ILs and the rubber. Most importantly, the incorporation of GO-ILs in the BIIR matrix could effectively improve the thermal stability of the rubber nanocomposites according to our thermogravimetric analysis (TGA). The activation energy (Ea) of thermal decomposition of GO-ILs/BIIR nanocomposites increases with the addition of GO-ILs. Besides, the thermal conductivity of GO-ILs/BIIR nanocomposite with 4 wt% of GO-ILs had 1.3-fold improvement compared to that of unfilled BIIR.  相似文献   

6.
Shape memory polyurethane (SMPU) has received tremendous interest because of its low cost, low density, as well as easy processing. However, its inferior mechanical properties compared to shape memory alloys have constrained its application in a broad range of engineering areas. Nanofillers are commonly added to polymers to overcome the problem associated with low mechanical characteristics. This study aims to examine the effect of various loadings of multiwalled carbon nanotubes (MWCNT) on the thermal stability, soft segment crystallinity, tensile and shape memory behaviour of palm oil polyol based SMPU nanocomposites. The SMPU nanocomposites were synthesised using a two-step polymerisation process. Microphase-separated SMPU nanocomposites obtained as the differential scanning calorimetric analysis showed two melting transitions, which belonged to the soft and hard phase domains. Furthermore, it was found that MWCNT had acted as a nucleating agent, which promoted the crystallisation process of SMPU nanocomposites. The thermal stability and tensile properties of SMPU/MWCNT nanocomposites were enhanced significantly as the MWCNT was added to the SMPU matrix. A considerable enhancement in the shape fixity (SF) value was revealed for PU-30 and PU-40 samples with the addition of MWCNT. The shape recovery (SR) time of SMPU was faster for samples reinforced with MWCNT, whereas SF increased while SR decreased upon increasing the shape memory cycle. The SMPU nanocomposites produced demonstrated enhanced thermal and tensile properties, which has the potential as smart material in many industrial applications.  相似文献   

7.
The thermal conductivities of several nanofluids (dispersions of alumina nanoparticles in ethylene glycol) were measured at temperatures ranging from 298 to 411 K using a liquid metal transient hot wire apparatus. Our measurements span the widest range of temperatures that have been investigated to date for any nanofluid. A maximum in the thermal conductivity versus temperature behavior was observed at all mass fractions of nanoparticles, closely following the behavior of the base fluid (ethylene glycol). Our results confirm that additional temperature contributions inherent in Brownian motion models are not necessary to describe the temperature dependence of the thermal conductivity of nanofluids. Our results also show that the effect of mass or volume fraction of nanoparticles on the thermal conductivity of nanofluids can be correlated using the Hamilton and Crosser or Yu and Choi models with one adjustable parameter (the shape factor in the Hamilton and Crosser model, or the ordered liquid layer thickness in the Yu and Choi model).  相似文献   

8.
Thermal and mechanical properties such as GIC (critical strain energy release rate), KIC (critical stress intensity factor), tensile, and flexural strength of bismaleimide (BMI) matrix toughened by commercially available polyetherimides (Ultem 1000P, Siltem STM 1700, and Extem VH1003) and polyimide P84 were investigated. In case of various contents, polyetherimides soluble in BMI phase separation was observed. The influence of the toughener amount on the mechanical properties of the matrices was studied. It was shown that Ultem and Siltem had a more significant influence on the GIC and KIC parameters than the more thermally stable P84 and Extem. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Liquid Silicone Rubber (LSR) is commonly used as gasket or seal material in many industrial applications. The temperature dependent material property of polymeric rubbers will result in stress relaxation/creep. The development of compressive stress in LSR between two clamping metal plates under temperature cycling is discussed in this paper. It is found that (a) in addition to stress relaxation, thermal expansion or contraction of the material contributes the most in the observed stress variation during temperature change, and (b) the stiffness of LSR appears to change according to temperature history.  相似文献   

10.
Quasi-static tensile test of UHMWPE fiber-reinforced composite laminate is challenging to perform due to low interlaminar shear strength and low coefficient of friction. Tensile tests proposed in the literature were conducted and limitations associated with each method led to the evolution of a new method. Tensile test of single-ply was realized as the best representative of tensile strength of a composite than tensile test of UHMWPE laminate. A fixture was developed for single-ply tests which increased friction and provided the mechanical constraint to slipping. The fixture is easy to fabricate and has provided repeatable results for eight grades of UHMWPE fiber-based (0/90) fabrics. Reported tensile strengths are in quite high range of 900–1500 MPa.  相似文献   

11.
Thermoplastic polyurethane (PU) elastomer, prepared from poly(tetramethylene glycol) and methyl diphenyl diisocyanate, was blended with boron nitride (BN) to fabricate a thermally conductive interface material. BN treated by a silane coupling agent (BN―NH2) and PU‐grafted BN were prepared to fabricate a composite that has better thermal conductivity and mechanical strength. The surface‐modified filler showed enhanced dispersibility and affinity because of the surface treatment with functional groups that affected the surface free energy, along with the structural similarity of the doped crystallized diisocyanate molecule with the matrix. The thermal conductivity increased from 0.349 to 0.467 W mk?1 on 20 wt% PU‐grafted BN loading that is a 1.34‐fold higher value than in the case of pristine BN loading at the same weight fraction. Moreover, the number of BN particles acting as defects, thereby reducing the mechanical strength, is decreased because of strong adhesion. We can conclude that these composite materials may be promising materials for a significant performance improvement in terms of both the thermal and mechanical properties of PU‐based polymers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A thermal conductivity of 32.5 W/mK is achieved for a boron nitride-filled polybenzoxazine at its maximum filler loading of 78.5% by volume (88% by weight). The extraordinarily high conductivity value results from outstanding properties of the polybenzoxazine matrix and the boron nitride filler. The bisphenol-A–methylamine-based polybenzoxazine possesses very low A-stage viscosity which aids in filler wetting and mixing. The filler particles with an average size of ca. 225 μm are large aggregates of boron nitride flake-like crystals. It has bimodal particle size distribution which assists in increasing the particle packing density. This filler–matrix system provides a highly thermally conductive composite due to the capability of forming conductive networks with low thermal resistance along the conductive paths. The SEM picture of the composite fracture surface reveals good interfacial adhesion between the boron nitride filler and polybenzoxazine matrix. Water absorption of the filled systems at 24 h is <0.1% and decreases with increasing filler content.  相似文献   

13.
Green composites of PLA with micropowders derived from agricultural by-products such as oat husks, cocoa shells, and apple solids that remain after pressing have been prepared by melt mixing. The thermal and mechanical properties of the composites, including the effect of matrix crystallization and plasticization with poly(propylene glycol), have been studied. All fillers nucleated PLA crystallization and decreased the cold-crystallization temperature. They also affected the mechanical properties of the compositions, increasing the modulus of elasticity but decreasing the elongation at break and tensile impact strength although with few exceptions. Plasticization of the PLA matrix improved the ductility of the composites.  相似文献   

14.
李武 《高分子科学》2017,35(5):659-671
Polypropylene(PP) composites containing magnesium oxysulfate whisker(MOSw) or lauric acid(LA) modified MOSw(LAMOSw) were prepared via melt mixing in a torque rheometer. The heterogeneous nucleating effect of LAMOSw was clearly observed in polarized light microscopy(PLM) pictures with the presence of an abundance of small spherulites. MOSw exhibited no nucleation effect and formed a few spherulites with large size. Compared with PP/MOSw composites, PP/LAMOSw exhibited better impact strength, tensile strength and nominal strain at break, ascribing to three possible reasons:(i) more β-crystal PP formed,(ii) better dispersity of LAMOSw in PP matrix and(iii) the plasticizing effect of LA. The results of dynamic mechanical thermal analysis(DMTA) indicated that brittleness of the PP matrix at low temperature was improved by the addition of LAMOSw, while the interfacial interactions between MOSw and PP matrix were actually weakened by LA, as evidenced by the higher tanδ values over the entire range of test temperatures. In terms of the rheological properties of the composites, both the η* and G′ at low frequencies increase with the addition of MOSw or LAMOSw, indicating that the PP matrix was transformed from liquid-like to solid-like. However, a network of whiskers did not form because no plateau was found in the G′ at low frequencies. With low filler content, LAMOSw produced a stronger solid-like behavior than MOSw mainly due to the better dispersion of the LAMOSw in PP matrix. However, for highly-filled composites, the η* of PP/LAMOSw at low frequencies was smaller than that of PP/MOSw composite, since the particleparticle contact effect played a major role.  相似文献   

15.
Novel high performance bisphenol A dicyanate ester (BADCy) resins/poly(urea-formaldehyde) microcapsules filled with epoxy resins (MCEs) composites have been prepared. The effects of different contents of MCEs on the thermal and dielectric properties of cured BADCy were investigated using dynamic mechanical analyzer (DMA), thermalgravimetric analyzer (TGA) and broadband dielectric analyzer. The dielectric properties of BADCy/MCEs treated in hot water and hot air were also discussed. The morphologies of BADCy/MCEs composites were characterized by scanning electron microscopy (SEM). Results indicate that the appropriate content of MCEs can improve or maintain the thermal stability, the low dielectric constant and dielectric loss of cured BADCy mainly owing to higher conversion of cyanate ester (-OCN) groups. After aged in hot water and hot air, respectively, BADCy/MCEs composites with small content of MCEs can retain the low dielectric constant and dielectric loss.  相似文献   

16.
We have prepared a series of polylactide/exfoliated graphite (PLA/EG) nanocomposites by melt‐compounding and investigated their morphology, structures, thermal stability, mechanical, and electrical properties. For PLA/EG nanocomposites, EG was prepared by the acid treatment and following rapid thermal expansion of micron‐sized crystalline natural graphite (NG), and it was characterized to be composed of disordered graphite nanoplatelets. It was revealed that graphite nanoplatelets of PLA/EG nanocomposites were dispersed homogeneously in the PLA matrix without forming the crystalline aggregates, unlike PLA/NG composites. Thermal degradation temperatures of PLA/EG nanocomposites increased substantially with the increment of EG content up to ~3 wt %, whereas those of PLA/NG composites remained constant regardless of the NG content. For instance, thermal degradation temperature of PLA/EG nanocomposite with only 0.5 wt % EG was improved by ~10 K over PLA homopolymer. Young's moduli of PLA/EG nanocomposites increased noticeably with the increment of EG content up to ~3 wt %, compared with PLA/NG composites. The percolation threshold for electrical conduction of PLA/EG nanocomposites was found to be at 3–5 wt % EG, which is far lower graphite content than that (10–15 wt % NG) of PLA/NG composites. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 850–858, 2010  相似文献   

17.
The electrical conductivity and impact strength of polypropylene(PP)/EPDM/carbon black ternary composites were investigated in this paper. Two processing methods were employed to prepare these ternary composites. One was called one‐step processing method, in which the elastomer and the filler directly melt blended with PP matrix. Another one was called two‐step processing method, in which the elastomer and the filler were mixed first, and then melt blended with pure PP. To get an optimal phase morphology that favors the electrical conductivity and impact strength, controlling the distribution of CB in PP/EPDM blend was a crucial factor. Thus the interfacial tension and the work of adhesion were first calculated based on the measurement of contact angle, and the results showed that CB tended to be accumulated around EPDM phases to form filler‐network structure. Expectably, the filler‐network structure was observed in PP/EPDM/CB(80/20/3) composite prepared by two‐step processing method. The formation of this filler‐network structure decreased the percolation threshold of CB particles in polymer matrix, and the electrical conductivity as well as Izod impact strength of the composite increased dramatically. This work provided a new way to prepare polymer composites with both improved conductivity and impact strength. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Electrically and thermally conductive polymer composites on the basis of biodegradable poly(lactic acid) (PLA) were developed and studied in this work. Pristine single-walled carbon nanotubes (CNTs) and powder of natural graphite (G) were used as fillers in polymer composites. PLA-based composites were prepared by melt-compounding method. The volume resistivity of PLA/CNT composites can be changed by more than ten orders of magnitude compared to that for neat PLA. The thermal conductivity of PLA/G composites can be changed from 0.193 W⋅m−1⋅K−1 (neat PLA) up to 2.73 W⋅m−1⋅K−1. Loading small quantity of CNTs into PLA/G composites increases the thermal conductivity not less than by 40% of magnitude. Besides, all developed PLA-based composites are suitable for processing by injection molding, extrusion or additive manufacturing technology (3D printing).  相似文献   

19.
In the present work, zinc oxide nanoparticles were treated with aminopropyl trimethoxy silane‐coupling agent and used as a new kind of reinforcement for a typical high performance bisphenol‐A‐based phthalonitrile resin. The resulted nanocomposites were characterized for their mechanical, thermal, and optical properties. Results from the tensile test indicated that the tensile strength and modulus as well as the toughness state of the matrix were all enhanced with the increasing of the nanoparticles amount. Thermogravimetric analysis showed that the starting decomposition temperatures and the residual weight at 800°C were highly improved upon adding the nanofillers. At 6 wt% nanoloading, the glass transition temperature and the storage modulus were considerably enhanced reaching about 359°C and 3.7 GPa, respectively. The optical tests revealed that the neat resin possesses excellent UV‐shielding properties, which were further enhanced by adding the nanofillers. Furthermore, the fractured surfaces of the nanocomposites analyzed by scanning electron microscope exhibited homogeneous and rougher surfaces compared with that of the pristine resin. Finally, the good dispersion of the reinforcing phase into the matrix was confirmed by a high resolution transmission electron microscope. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Zinc dimethacrylate functionalized graphene (Z‐GE), as reinforcing nanofiller for natural rubber (NR), was synthesized by liquid‐phase exfoliation and in situ method. The morphology and structure of Z‐GE were characterized to confirm the exfoliation and functionalization of GE. The NR/Z‐GE composites were prepared and investigated by mechanical analysis, crosslinked network analysis and the analysis of thermal conductivity. The results showed that the tensile strength, tear strength and modulus at 300% strain of NR/Z‐GE‐20 composites (contents 1.400 phr GE) were increased by 142%, 76% and 231% as compared with the pure NR, respectively. And the thermal conductivity of NR/Z‐GE‐30 composites is enhanced by 39% as that of the pure NR. This significant improvement is attributed to the formation of covalent crosslinked network and ionic crosslinked network and efficient interfacial interaction between GE and NR matrix. This method provides a new insight into the fabrication of multifunctional GE composites and enlarges its potential applications in high performance GE‐based rubber composites. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号