首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to separate and enrich of cadmium, copper, lead and nickel before its determination with graphene nanoplatelets by atomic absorption spectrometry was described. For this aim, analyte elements were collected on sorbent in mini filter. The influences of experimental conditions (pH of sample, amount of sorbent, concentration of eluent, foreign ions), retention and elution parameters on the recovery of the analyte elements were examined. After the optimisation of experimental parameters, a successful separation and enrichment were obtained at pH = 7 and eluted with 0.1 M of HNO3 applying a 20 mL/min of drawing and discharging rates for sorption and elution steps with high (>95%) quantitative recovery and high precision (<10% relative standard deviation). Using the proposed technique, the cadmium, copper, lead and nickel in various water samples (tap water and river water) could be practically and easily removed and enriched with 95% confidence level. The limit of detection for cadmium, copper, lead and nickel was 0.78, 0.41, 5.40 and 0.44 μg/L (3σ, N = 10), respectively. The proposed technique was fast, simple, environmental friendly and economic.  相似文献   

2.
A solid phase extraction method is established for preconcentration of nickel, lead, cadmium, copper and cobalt using pipette tip solid phase extraction. The presented process was dependent on chelation of analytes with 1,3,4-thiadiazole-2,5-dithiol, then allowing the solution to flow through an activated carbon cloth packed pipette tip. The adsorbed metal chelates on the surface of activated carbon cloth were eluted by 5 mL of 3 M HNO3. The concentrations of nickel, lead, cadmium, copper and cobalt were detected using a flame atomic absorption spectrometer (FAAS). The pipette tip solid phase extraction exhibit a preconcentration factor of 120. The limit of detection values were 2.7, 1.7, 1.3, 2.0 and 2.9 µg L?1 for Ni(II), Pb(II), Cd(II), Cu(II) and Co(II), respectively. Validation of the method was checked by the analysis of TMDA-53.3 and TMDA-64.2 certified reference materials. The method was successfully applied for water and fertiliser samples.  相似文献   

3.
Data on the sorbability of ions of heavy metals (lead, cobalt, cadmium, zinc, copper, nickel) from Ringer’s solution with complex composition by untreated SKS synthetic carbons and those modified with nitrogen and sulfur were obtained. Exploratory studies of the sorption of complex anions of copper and iron with complexing ligands (Cl and CN) were performed. Selectivity series of toxic metals were determined on the basis of their calculated distribution coefficients. It was shown that the best sorption effect is due to the presence of nitrogen atoms and strongly acidic SO3H groups in the carbon structure.  相似文献   

4.
We are introducing nanoporous fructose (np-F) modified with dithizone as a new solid-phase for extraction of heavy metals ions including cadmium(II), copper(II), nickel(II) and lead(II). Effects of pH value, flow rates, type, concentration and volume of the eluent, breakthrough volume, and of other ions were studied. Under optimized conditions, the extraction efficiency is >97 %, and the limits of detection are 0.025, 0.15, 0.5 and 1.2 ng mL?1 for the ions of cadmium, copper, nickel, and lead, respectively, and the adsorption capacities for these ions are 101, 81, 74 and 178 mg g?1. The modified np-F sorbent was characterized by thermogravimetric analysis, differential thermal analysis, transmission electron microscopy, Fourier transform infrared spectrometry, X-ray diffraction, and nitrogen adsorption surface area (BET) measurements.
Figure
We are introducing nanoporous fructose (np-F) modified with dithizone as a new solid-phase for extraction of heavy metals ions including cadmium(II), copper(II), nickel(II) and lead(II). This SPE technique was successfully applied for separation, determination, and preconcentration of cadmium, copper, nickel and lead in biological, food and environmental water samples  相似文献   

5.
The measured concentrations of cadmium, cobalt, copper, nickel, lead, zinc, and manganese in acidified (pH<2) estuarine water samples analyzed for total dissolved trace metal concentrations using on-line chelating resin column partitioning with inductively coupled plasma-mass spectrometry (CRCP-ICP-MS) were compared to those analyzed by graphite furnace atomic absorption spectrometry (GFAAS) after liquid-liquid extraction using a combination of 1-pyrrolidinedithiocarbamate/diethyldithiocarbamate (PDC/DDC). Although there was good agreement between the two sets of analyses for cadmium, lead, manganese, and zinc concentrations, those of cobalt, copper, and nickel determined by CRCP-ICP-MS were found to be 10-20% lower than those determined by solvent-extraction GFAAS. The different yields were positively correlated (R>0.961, simple linear regression) to the dissolved organic carbon (DOC) concentration of the samples. Good agreement between the two methods for cobalt and copper was achieved after ultraviolet (UV) digestion of the acidified samples. Samples collected from the South Bay of the San Francisco Estuary with high DOC showed the greatest difference for cobalt, copper, and nickel which is tentatively attributed to complexation with humic material for copper and cobalt and strong synthetic chelating agents such as ethylenediaminetetraacetic acid (EDTA) for nickel. This is consistent with previous studies on copper, nickel and cobalt complexation in this region. We recommend UV digestion of acidified estuarine samples prior to multi-element analysis by chelating resin flow injection ICP-MS methods.  相似文献   

6.
《Analytical letters》2012,45(15):2331-2339
Crosslinked glycidylmethacrylate-methylmethacrylate-divinylbenzen (GMA-MMA-DVB) microspheres were prepared by suspension polymerization. The GMA-MMA-DVB microspheres with an average size of 150–300 μm and surface area of 1.51 m2g?1 were functionalized with 2-aminothiazole (ATAL). The affinity of the functionalized microspheres for copper, iron, aluminum, lead, cobalt, and nickel ions was examined. The effects of pH, resin amount, shaking time, type, and volume of the elution solution on the sorption and desorption properties of functionalized microspheres for these metal ions were investigated using the batch method. Sorption capacities (0.97–1.12 mmolg?1), quantitation limits (2.6–3.0 ppb) and recoveries (90–99%) were calculated.  相似文献   

7.
 In the present study, the determination of arsenic, lead, cadmium, chromium, cobalt, copper, nickel, mercury and zinc in various cloth samples produced in Kayseri-Turkey was performed after extraction with artificial sweat solution and decomposition with nitric acid. TXRF is shown to be suitable for the determination of 7 trace elements, down to the 0.001 (cobalt) to 0.004 (copper) mg/kg level in textile extract except for mercury and cadmium. The extractable part of the toxic metals by artificial sweat solution is relatively low. In a few extracts the concentration values of Pb and Ni have exceeded their critical values of 0.2 mg/kg for lead and 1.0 mg/kg for nickel given by ?ko-Tex and determined for babys cloths. In addition, it was observed that the element pattern of textile samples resembled ‘finger print type’, TXRF-spectra. This technique can also be used for the identification of textile sample in forensic investigation. Received April 16, 2001 Revision October 1, 2001.  相似文献   

8.
The multifunction groups-containing ion exchange fibre is an amphoteric ion exchanger. It has high sorption capacities and good kinetic properties for the extraction of heavy metals. It might be an effective tool for removal and concentration of copper, cadmium, chromium, cobalt, nickel, lead, mercury, zinc and manganese.  相似文献   

9.
Copper, nickel, and cadmium can be determined in 100 ml of sea water by coprecipitation with cobalt pyrrolidinedithiocarbamate and graphite atomizer atomic absorption spectrometry. Concentration ranges likely to be encountered and estimated (1 σ ) analytical precisions are 1–6 nmol kg-1 (±0.1) for copper, 3–12 nmol kg-1 (±0.3) for nickel and 0.0–1.1 nmol kg-1 (±0.1) for cadmium. The technique may be applied to fresh-water samples with slight modification.  相似文献   

10.
Procedures are described for the determination of bismuth, cadmium, chromium, cobalt, copper, lead, manganese, nickel, silver, thallium and zinc in post-mortem liver samples by atomic absorption spectrometry. The technique involves a simple HCl/HNO3 digestion at 100 ±20 °C, gives good recoveries and appears to be applicable to other tissues, and blood. Results of analyses of post-mortem material from eleven subjects with no known exposure to toxic metals, are presented. They are comparable with overseas findings and show no excessive levels.  相似文献   

11.
A simple and sensitive method has been developed for the determination of trace elements (Cd, Co, Cu, Ni, Fe and Pb) in sea water and natural waters by electrothermal atomic absorption spectrometry. The method is based on column solid phase extraction of trace elements on a newly synthesized polycarboxylic gel. The sorbent was prepared by dispersion copolymerization of methacrylic acid (as a monomer) and trimethylolpropane trimethacrylate (as a crosslinking agent) in the form of monodisperse microspheres. It exhibits high regeneration ability, chemical and mechanical resistivity. The influence of pH, flow rates and concentration of the eluent on the degree of sorption of trace elements have been evaluated. The maximum static adsorption capacities of the sorbent at the optimal conditions for lead, nickel, cobalt, iron, cadmium and copper are determined. Detection limits achieved for the elements studied for 100 mL water sample volume were between 0.005 and 0.05 μg L?1. The relative standard deviation varied in the range 5–13% for all elements studied. The validity of the method was checked by an analysis of standard reference material SRLS-3 Riverine Water. Very good agreement between the analytical results and the certified values (t-test at 95% confidence level) was observed. The new polycarboxylic gel was applied to passive sampling procedures due to its high chemical and mechanical stability.  相似文献   

12.
The use of 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane (Tet) in chloroform solutions provides quantitative extraction of lead(II), cadmium(II), copper(II) and zinc(II) at different pH values from solutions containing perchlorate and cyclohexanecarboxylic acid. Nickel(II) and cobalt(II) ions are not extracted quantitatively. Single extractions of mixtures of copper with transition metals gave the best separations for the copper/nickel system. Separations of copper from cobalt, lead, manganese and iron were less satisfactory.  相似文献   

13.
Summary The synthesis and characteristics of a new chelating glycinohydroxamate-containing polymer resin is described. The functionality of the polymer is 1.76 mmolg–1. The hydrogen capacity, water regain and adsorption capacities for iron(III), cadmium(II), cobalt(II), copper(II), nickel(II) and zinc(II) were measured at various pH values; uptake of the metal ions increased with pH and was quantitative above pH 3 for most of the metal ions. All cations studied showed high exchange rates towards the resin. The half saturation times for iron(III), cadmium(II), copper(II) and zinc(II) were all less than 1 min. The coordination behaviour of the resin was studied with the help of e.p.r., i.r., u.v. and potentiometry. The pK a of the resin is 10.70 and the log value of the stability constants for iron(III), copper(II), lead(II), zinc(II), cobalt(II), manganese(II), cadmium(II) and nickel(II) were measured as 21.81, 19.50, 19.20, 18.59, 18.51, 18.46, 18.37 and 18.36, respectively, at 25 ° C and I = 0.2M KCl.  相似文献   

14.
Kubiak WW  Latonen RM  Ivaska A 《Talanta》2001,53(6):1211-1219
Two sequential injection systems have been developed for adsorptive stripping voltammetric measurement. One is for substances adsorbing at mercury, e.g. riboflavin. In this case, a simple arrangement with only sample aspiration is needed. Reproducibility was 3% and detection limit 0.07 μM. The measuring system was applied to determination of riboflavin in vitamin pills and to study the photodegradation process of riboflavin in aqueous solutions. In the second case, metal ions were determined. They have to be complexed before deposition on the mercury surface. Thus, both the sample and the ligand have to be aspirated in the system. In this case, the reproducibility was ≈6% and the detection limit <0.1 ppm for cadmium, lead and copper when complexation with oxine was used. Dimethylglyoxime was used in determination of nickel and cobalt and nioxime complexes were used in determination of nickel and copper. With these complexing agents, the reproducibility was the same as with oxine, but the metals could be determined at concentrations lower than 0.01 ppm. Application of two ligands in a SIA system with AdSV detection was also studied. Simultaneous determination of copper, lead, cadmium and cobalt was possible by using oxine and dimethylglyoxime. Copper and nickel were simultaneously determined by using dimethylglyoxime and nioxime.  相似文献   

15.
The biosorption of several heavy metals such as cobalt(II), chromium(III), lead(II), cadmium(II), nickel(II), and manganese(II) from aqueous systems on living microalgae cultures, Scenedesmus quadricauda and Neochloris pseudoalveolaris were studied under laboratories conditions. The kinetic and statistical parameters were calculated by using the data obtained from batch cultivation and well fitted a pseudo-first-order rate equation. The initial metal concentrations in solution were about 5–40 mg · L?1. According to the pseudo-second-order model, the biosorption capacities of Scenedesmus quadricauda for Co(II), Cr(III), Pb(II), Cd(II), Ni(II), and Mn(II) ions were found in the ranges of 2.14–52.48, 1.98–81.98, 8.05–4.26, 7.81–24.96, 2.17–55.71, and 3.54–75.20 mg g?1, respectively. Kinetic studies revealed that the metal uptake capacity of each living green algae was rather fast. It was also observed that the biosorption kinetic rate decreased with increasing concentration for both microalgae. The application of diffusion-controlled models to the experimental results indicated that the contribution of intraparticle diffusion to the overall sorption kinetics was not very important. Results showed that Co(II), Cr(III), Pb(II), Cd(II), Ni(II), and Mn(II) ions could effectively be absorbed by using living microalga cultures from aqueous solutions.  相似文献   

16.
The new hydrazone, supported on silica gel, is used to preconcentrate traces of copper, zinc, lead, nickel, cobalt and cadmium from tap, lake and sea water. Conditions for quantitative retention are established. Copper, zinc, lead, cadmium and nickel are quantitatively eluted with 0.1 M EDTA, and cobalt with 2 M perchloric acid. The metals are measured by atomic absorption spectrometry.  相似文献   

17.
A new method for the simultaneous determination of seven heavy metal ions in water by solid-phase extraction and reversed-phase high-performance liquid chromatography (RP-HPLC) was developed. The copper, nickel, cobalt, silver, lead, cadmium, and mercury ions were pre-column derivatized with tetra( m-aminophenyl)porphyrin (T m-APP) to form colored chelates. The metal-T m-APP chelates in 100 mL of sample were preconcentrated to 1 mL by solid-phase extraction with a C(18 )cartridge; an enrichment factor of 100 was achieved. The chelates were separated on a Waters Xterra()RP(18) column by gradient elution with methanol (containing 0.05 mol L(-1) pyrrolidine-acetic acid buffer salt, pH 10.0) and acetone (containing 0.05 mol L(-1) pyrrolidine-acetic acid buffer salt, pH 10.0) as mobile phase at a flow rate of 1.0 mL min(-1) and detected with a photodiode array detector. The detection limits of copper, cobalt, nickel, silver, lead, cadmium, and mercury are 2, 2, 3, 4, 3, 3, and 3 ng L(-1), respectively, in the original sample. The method was also applied to the determination of these metals in water with good results.  相似文献   

18.
Dellien I  Persson L 《Talanta》1979,26(12):1101-1104
The extraction of cobalt, nicke cadmium and lead ions by means of APDC/MIBK has been studied at various acidities of the aqueous phase (pH 0.2–6). Lead and nickel are extracted equally well over this pH-range, while cobalt and cadmium require pH> 1. The time stability of the extracted complexes in MIBK increases in the order cadmium < lead < nickel < cobalt. The decomposition of the complexing agent or the metal complexes is rapid in the two-phase system MIBK/water.  相似文献   

19.
We have immobilized living and non-living Escherichia coli (E. coli) bacteria on multiwalled carbon nanotubes (MWCNT) and used such materials as a biosorbent for the separation and preconcentration of copper, cobalt, cadmium and nickel prior to their determination by flame atomic absorption spectrometry (FAAS). E. coli bacteria cells were mixed with MWCNTs in a 1:1 ratio, dried and placed at the tip of a 50-mL syringe. The ions were retained on the sorbent and then eluted by drawing and ejecting back the sample (or standard solution) and an eluent, respectively. The effects of various experimental parameters on the sorption and elution were investigated. The analytes were quantitatively retained (at pH values of 7) and eluted (with 0.5 M nitric acid) with high precision, the RSD being <5%. The performances of the new sorbents were compared using certified reference materials. The sorbent modified with living E. coli has a higher adsorption capacity and displays somewhat better recoveries compared to sorbent based on non-living E. coli. Both sorbents were successfully used for the separation and preconcentration of copper, cobalt, cadmium and nickel prior to their determination by flame atomic absorption spectrometry.
Figure
SEM photograph of (a) living E. coli immobilized on MWCNT and (b) non-living E. coli immobilized on MWCNT  相似文献   

20.
《Analytical letters》2012,45(5):251-257
Abstract

By the combined use of the absorption tube technique and solvent extraction, determination of cadmium, cobalt, copper, iron, lead and nickel in silicate rocks was investigated.

Applicable concentration range was from 0.1 to 1.Oppm for all the elements except cadmium, for which the range was from 0.005 to 0.025ppm. The accuracy and recovery determined by the use of standard samples from the United States National Bureau of Standards and Geological Survey were satisfactory for practical purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号