首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inorganic nanomaterials such as nanotubes and nanorods have attracted great attention due to their anisotropic properties. Although the alignment control of inorganic nanomaterials is key to the development of functional devices utilizing their fascinating properties, there is still difficulty in achieving uniform alignment over a large area with a micrometer thickness. To overcome this problem, we focused on liquid crystals (LCs) to promote the alignment of anisotropic nanomaterials, taking advantage of the cooperative motion of LCs. We present the uniform, one-dimensional alignment of ZnO nanorods along the direction of LCs in micrometer-thick cells by grafting nematic LC polymers from the nanorod surfaces to provide miscibility with the host LCs. Polarized optical microscopy and polarized UV–visible absorption spectroscopy revealed the unidirectional alignment of nematic LC polymer-grafted ZnO nanorods parallel to the nematic host LCs.  相似文献   

2.
《Liquid crystals》1997,23(6):923-925
We investigated new rubbing-free techniques for liquid crystal (LC) alignment with non- polarized ultraviolet (UV) light irradiation on plates coated with two kinds of the polyimide (PI) films. It was found that monodomain alignment of nematic (N) LC is obtained in the cell having a PI surface without a side chain. We successfully observed that the generated pretilt angle of the NLC is about 3 with an angle of incidence of 70 on the PI surface without side chains. This pretilt angle generation is attributed to interaction between the LC molecules and the polymer surfaces; the uniform alignment of NLC is attributed to anisotropic dispersion force effects due to photo-depolymerization of polymer on PI surfaces.  相似文献   

3.
ABSTRACT

The properties of the thin films of liquid crystal (LC) molecules can be governed easily by external fields. The anisotropic structure of the LC molecules has a large impact on the electrical and optical properties of the film. The Langmuir monolayer (LM) of LC molecules at the air–water interface is known to exhibit a variety of surface phases which can be transferred onto a solid substrate using the Langmuir?Blodgett (LB) technique. Here, we have studied the LM and LB films of asymmetrically substituted bent-core LC molecules. The morphology of LB film of the molecules is found to be a controlling parameter for aligning bulk LC in the nematic phase. It was found that the LB films of the bent-core molecules possessing defects favour the planar orientation of nematic LC, whereas the LB films with fewer defects show homeotropic alignment. The defect in LB films may introduce splay or bend distortions in the nematic near the alignment layer which can govern the planar alignment of the bulk LC. The uniform layer of LB film facilitates the molecules of nematic to anchor vertically due to a strong van der Waals interaction between the aliphatic chains leading to a homeotropic alignment.  相似文献   

4.
Octadecylamine-functionalised single-walled carbon nanotubes (SWCNTs) were dispersed into nematic liquid crystals (LCs) doped with chiral molecules. The collective orientation of nematic LC molecules in helical layers was manipulated by varying dopant concentration. Highly anisotropic nature of SWCNTs enhanced the anisotropy of the LC as confirmed by polarised fluorescence spectroscopy. The π–π interaction of SWCNTs present in the planar alignment layers and twisted nematic LC molecules affects the molecular relaxation process. An irreversible electro-optic memory in the material has been observed.  相似文献   

5.
Size- and aggregation-controlled dispersion of thin multiwalled carbon nanotube (t-MWCNT) in negative dielectric anisotropic liquid crystal (LC) material exhibits remarkable improvement in electro-optic response time in vertically aligned LC cells. The physical properties such as birefringence, dielectric anisotropy and clearing temperature of nanotube dispersed LC material appear to be almost invariant to that of pristine LC. Nevertheless, the response time shows noticeable improvement, especially in decaying time associated with transition from maximum to minimum transmission, hence important for faster switching LC devices. The effect is attributed to that vertically aligned t-MWCNTs along the field direction play role of vertical alignment layer between LCs, consequently resulting in increased bend elastic constant of LCs.  相似文献   

6.
ABSTRACT

The two-dimensional graphene-honeycomb structure can interact with the liquid crystal’s (LC) benzene rings through π–π electron stacking. This LC–graphene interaction gives rise to a number of interesting physical and optical phenomena in the LC. In this paper, we present a combination of a review and original research of the exploration of novel themes of LC ordering at the nanoscale graphene surface and its macroscopic effects on the LC’s nematic and smectic phases. We show that monolayer graphene films impose planar alignment on the LC, creating pseudo-nematic domains (PNDs) at the surface of graphene. In a graphene-nematic suspension, these PNDs enhance the orientational order parameter, exhibiting a giant enhancement in the dielectric anisotropy of the LC. These anisotropic domains interact with the external electric field, resulting in a non-zero dielectric anisotropy in the isotropic phase as well. We also show that graphene flakes in an LC reduce the free ion concentration in the nematic media by an ion-trapping process. The reduction of mobile ions in the LC is found to have subsequent impacts on the LC’s rotational viscosity, allowing the nematic director to respond quicker on switching the electric field on and off. In a ferroelectric LC (smectic-C* phase), suspended graphene flakes enhance the spontaneous polarisation by improving the tilted smectic-C* ordering resulting from the π–π electron stacking. This effect accelerates the ferroelectric-switching phenomenon. Graphene can possess strain chirality due to a soft shear mode. This surface chirality of graphene can be transmitted into LC molecules exhibiting two types of chiral signatures in the LCs: an electroclinic effect (a polar tilt of the LC director perpendicular to, and linear in, an applied electric field) in the smectic-A phase, and a macroscopic helical twist of the LC director in the nematic phase. Finally, we show that a graphene-based LC cell can be fabricated without using any aligning layers and ITO electrodes. Graphene itself can be used as the electrodes as well as the aligning layers, obtaining an electro-optic effect of the LC inside the cell.  相似文献   

7.
Stimuli‐directed alignment control of liquid crystals (LCs) with desired molecular orientation is currently in the limelight for the development of smart functional materials and devices. Here, photoresponsive azo thiol (AzoSH) was grafted onto gold nanoparticles (GNPs). The resulting hybrid GNPs were able to homogeneously mix with a commercially available nematic LC host, as evidenced by Cryo‐TEM. Interestingly, the LC nanocomposites were found to undergo reversible alignment transition upon light irradiation as a consequence of the transcis photoisomerization of the azo groups on the GNP surface. LC molecules in either planar or bare glass cells were able to change their alignment to vertical upon UV irradiation, while the vertically aligned LC molecules returned to the planar or random orientation under visible irradiation. Neither the azo thiol molecules nor the unfunctionalized GNPs alone promoted the alignment of the LC molecules in the system upon light irradiation. The photoinduced vertical alignment without applied electric or magnetic field was very stable over time and with respect to temperature. Furthermore, an optically switchable device based on the photostimulated reversible alignment control of LCs was demonstrated.  相似文献   

8.
《Liquid crystals》1999,26(7):959-964
We have investigated the generation of pretilt angle for a nematic liquid crystal (NLC) alignment in cells with oblique non-polarized ultraviolet (UV) light irradiation on polyimide (PI) surfaces. It was found that monodomain alignment of the NLC is obtained with an incident angle of 70 degrees and 75 degrees on the PI surface. It is considered that this alignment may be attributed to the anisotropic dispersion force due to photo-depolymerization of polymer on PI surfaces. Also, the generated NLC pretilt angles are all about 3 degrees at an incident angle of 70 degrees and 75 degrees for 1 h irradiation. Next, we observed that the voltage-transmittance characteristics for a photo-aligned twisted nematic (TN) LCD with an incident angle of 80 degrees on a PI surface were excellent. Also, we measured that the voltage-holding-ratio (VHR) of a photo-aligned TN-LCD is about 94%; it is almost same as obtained for rubbing-aligned TN-LCDs. Finally, the slow response time of photo-aligned TN-LCDs is attributable to their weak anchoring strength.  相似文献   

9.
The Langmuir monolayer at an air–water interface shows remarkably different surface pressure (π)–area (A) isotherm, when measured with the surface normal of a Wilhelmy plate parallel or perpendicular to the direction of compression of the monolayer. Such difference arises due to difference in stress exerted by the monolayer on the plate in different direction. In this article, we report the effect of changing the direction of substrate normal with respect to the compression of the monolayer during Langmuir–Blodgett (LB) film deposition on the morphology of the films. The morphology of the LB film of stearic acid is studied using an atomic force microscope. The morphology of the LB films is found to be different due to difference in the stress in different directions. The role of such surface morphology on the alignment of a nematic liquid crystal (LC) in LC cells is studied. The granular texture of LB films of stearic acid supports the homogeneous alignment of the LC whereas the uniform texture supports the homeotropic alignment of the LC.  相似文献   

10.
11.
12.
一种新型的氢键自组装液晶光控取向膜   总被引:2,自引:0,他引:2  
报道了一种新型的以氢键为驱动力的液晶自组装光控取向膜, 研究了薄膜的制备方法与光敏特性. 通过聚(4-乙烯基吡啶)中的吡啶基团与光敏聚丙烯酰氧基肉桂酸间的氢键作用制备了LBL(layer-by-layer)型的自组装多层膜, 制备过程的紫外-可见光谱表明, 该组装过程为逐层、均匀沉积过程. 傅里叶变换红外光谱表明, 多层膜的成膜驱动力为氢键. 用线性偏振紫外光辐照该薄膜, 多层膜中与光矢量方向匹配的光敏基团发生[2+2]环加成反应, 形成表面张力各向异性的薄膜. 用该薄膜作为向列相液晶的取向膜制成平行液晶器件, 在偏光显微镜下观察, 发现获得了均一、稳定的取向效果.  相似文献   

13.
The effects of the surface polarity of a glass substrate on the orientation of nematic liquid crystals (LCs) were studied using the polarised optical microscope and Fourier-transform infrared spectroscopy. On the surface of oxygen plasma treated glass, a homeotropic alignment of LCs was induced for LCs with negative dielectric anisotropy. This suggests that vertical orientation of LCs could be induced on a polar glass substrate without using an LC alignment layer. Upon cooling towards the isotropic–nematic transition, E7 with positive dielectric anisotropy changes its LC arrangement to isotropic, homeotropic, planar orientations in order. The nematic LC anchoring transition of E7 was interpreted by considering the competition between van der Waals forces and dipole interactions that control the alignment of LC molecules on a polar glass surface.  相似文献   

14.
We obtained homogeneously aligned liquid crystals (LCs) on ion beam (IB) irradiated poly(methyl methacrylate) (PMMA) by controlling the IB energy. We then examined the LC alignment state using polarized optical microscopy and conducted thermal stability testing. We obtained homogeneous LC alignment at IB energies above 1,400 eV, indicating that strong IB energy facilitates the alignment of LCs on the PMMA surface. This surface was analyzed by atomic force microscopy, and the contact angles (CAs) were measured to elucidate the mechanism of LC alignment. The increased surface energy strengthened the van der Waals interaction between the surface and LCs, thereby inducing stable, homogeneous LC alignment. Electro-optical (EO) characteristics were measured using twisted nematic (TN) LC mode. Compared to LC cells with conventionally used rubbed polyimide (PI), the LC cells with IB-irradiated PMMA exhibited higher thermal budgets and good electro-optical characteristics. These new LC cells have promising potential for advanced LC displays.  相似文献   

15.
The optical response time of a nematic liquid crystal (NLC) decreases due to incorporation of carbon nanotubes (CNTs) in the liquid-crystal host. Such reduction is believed to be due to an increase in the elastic constant of the nanotube-doped LC system. In this paper, we present the effect on optical response due to doping an NLC with octadecylamine functionalised single-walled carbon nanotubes (ODA-SWCNT) in a twisted alignment mode. The electro-optic switching amplitude of ODA-SWCNT nanocomposites of NLC decreases compared to pure NLC. A fast response time is observed with an increase in the concentration of ODA-SWCNT in NLC host. Additionally, optical response of pure NLC in a twisted nematic (TN) cell fabricated using mixtures of polyimide (PI) and ODA-SWCNT as an alignment layer is investigated. The optical response time decreased by ~75% in a TN cell fabricated with a mixture of PI and ODA-SWCNT compared to that of a TN cell prepared using a pure PI alignment layer. The presence of ODA-SWCNT in the alignment layer enhances the surface anchoring of the NLC molecules leading to an increase in the elastic constant and a decrease in the optical response time of NLC.  相似文献   

16.
Patterned homeotropic alignment using nanoparticles (NPs) was achieved using inkjet printing. Two types of gold NPs, one smaller and one larger in core diameter (2 and 5 nm) capped with a monolayer of dodecanethiol, and emissive carbon dots with a core diameter of 2.5 nm featuring a mixed ligand shell of carboxylic acid groups and aliphatic hydrocarbon chains were tested on both rigid glass and flexible polycarbonate substrates. To define the director across the entire cell and not just in the NP-printed areas, alignment ‘underlayers’ were tested, and 30° obliquely evaporated SiOx as alignment ‘underlayer’ generally provided the best results with the highest quality of the homeotropic alignment as well as the best contrast at the boundary between printed and non-printed (i.e. homeotropic and planar) domains of the fabricated cells. We also report that the chemical nature of the nematic liquid crystal (LC) used, the number of layers printed and the composition of the nano-ink need to be adjusted to obtain pattern alignment devices that positively benefit from both the properties of the LC and the nanomaterial printed.  相似文献   

17.
We propose a new optical method and the experimental set-up for measuring the anisotropic shear viscosities of nematic liquid crystals (LCs). LC shear viscosities can be optimized to improve liquid crystal display (LCD) response times, e.g. in vertical aligned nematic (VAN) or bistable nematic displays (BND). In this case a strong back-flow effect essentially determines the LCD dynamic characteristics. A number of shear viscosity coefficients defines the LCD response time. The proposed method is based on the special type of a shear flow, namely, the decay flow, in the LC cell with suitably treated substrates instead of magnetic or electric field application. A linear regime of a quasi-stationary director motion induced by a pressure difference and a proper configuration of a LC cell produces decay flow conditions in the LC cell. We determine three principal shear viscosity coefficients by measuring relative time variations of the intensity of the light passed through LC cells. The shear viscosity coefficient measurements provide a new opportunity for the development of new LC mixtures with fast response times in VAN, BND and other important LCD types.  相似文献   

18.
We propose a new optical method and the experimental set-up for measuring the anisotropic shear viscosities of nematic liquid crystals (LCs). LC shear viscosities can be optimized to improve liquid crystal display (LCD) response times, e.g. in vertical aligned nematic (VAN) or bistable nematic displays (BND). In this case a strong back-flow effect essentially determines the LCD dynamic characteristics. A number of shear viscosity coefficients defines the LCD response time. The proposed method is based on the special type of a shear flow, namely, the decay flow, in the LC cell with suitably treated substrates instead of magnetic or electric field application. A linear regime of a quasi-stationary director motion induced by a pressure difference and a proper configuration of a LC cell produces decay flow conditions in the LC cell. We determine three principal shear viscosity coefficients by measuring relative time variations of the intensity of the light passed through LC cells. The shear viscosity coefficient measurements provide a new opportunity for the development of new LC mixtures with fast response times in VAN, BND and other important LCD types.  相似文献   

19.
20.
Polyfluorene (PFO) embedded in a nematic liquid crystal (LC) matrix is investigated. For low PFO weight contents, a homogeneous dispersion is obtained which displays a strong fluorescence anisotropy along the LC director, indicating a significant alignment of the polymeric chains along this direction. Besides, for relatively high PFO weight contents, phase separation takes place. Under these conditions, the sample is composed of micrometer‐sized domains, where the two species are in solution, enclosed by segregated polymeric boundaries. By polarized‐photoluminescence imaging and spectroscopy, it is found that most of the light emission originates from these boundaries and gets strongly pinned along their orientation. Since boundaries are mainly oriented orthogonal to the LC chains, this morphological alignment results in a system in which the orientation of the polarization emission can be predicted and possibly controlled. Conversely, in the homogeneous sample one can obtain a homogeneous emission polarization by controlling the alignment of the LC. These features are potentially relevant for the development of flexible polarization‐sensitive optoelectronic devices. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1558–1563  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号