首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The region of existence of neon clathrate hydrates is an actual problem of hydrate chemistry. The current work presents theoretical study of the equilibrium formation conditions of pure neon clathrate hydrates and double clathrate hydrates of neon-methane mixture. The structures and properties of double clathrate hydrates were described within the scope of the previously developed molecular clathrate hydrate model that takes into account the influence of guest molecules on the host lattice, interaction of guest molecules between themselves, and the possibility of multiple filling of host lattice cages by guest molecules. The model makes it possible to find an equilibrium state and thermodynamic properties of clathrate hydrates at given values of p and T. In the present work, we considered the properties of double clathrate hydrates in the range of pressures from 0 to 4 kbar at 250 K. The results of modeling have shown that the mass fraction of neon in double clathrate hydrate of Ne and CH4 mixture of cubic structure I (sI) can reach 26%, and 22.5% in double hydrate of cubic structure II (sII) even at a low methane concentration (1%) in gas phase, at high pressure. It is shown that in double clathrate hydrates of the Ne and CH4 mixture at high pressures, phase transition sII-sI can occur.  相似文献   

2.
杨文杰  黄骏 《波谱学杂志》2021,38(4):460-473
固体酸是工业烃转化和生物质精炼中应用最广泛的非均相催化剂之一,了解它们的局部结构和酸性等性质有利于合理设计高效绿色固体酸催化剂,从而提高目标反应的活性和稳定性.近年来,固体核磁共振波谱在定性和定量表征固体酸的局部结构和酸性方面已显示出巨大的应用潜力,甚至可作为一种标准方法.二维固体核磁共振波谱的应用可以进一步揭示固体酸表面位点的结构对称性和不同位点的空间构效关系,从而加深对“催化剂结构-酸性-活性关系”的理解.在这篇综述中,我们总结了用于固体酸表征的固体核磁共振波谱方法和常规实验操作流程,并着重阐述了在使用和不使用探针分子的情况下,固体核磁共振波谱应用于固体酸局部结构和酸性性质研究的进展.  相似文献   

3.
固体核磁共振技术在气体水合物研究中的应用   总被引:2,自引:0,他引:2  
气体水合物是在低温高压条件下由气体和水形成的笼型化合物,主要有I型,II型和H型3种晶体结构,而固体核磁共振(solid state NMR)是测定其水合指数、笼占有率等结构参数的重要手段. 该文综述了固体核磁共振技术的原理及其在水合物研究中的应用,着重介绍固体核磁共振在水合物结构表征、气体组分的鉴定、结构转化、以及在水合物生成/分解动力学过程监测方面的研究进展. 同时,对其实验方法及测试条件也进行了详细的探讨.  相似文献   

4.
Abstract: Steroids are an important class of organic compounds containing a vast array of biologically and physiologically essential molecules. Due to their availability, relatively straightforward derivatizability, and endogeneity, they are widely used in pharmacological applications. The investigation of molecular and physicochemical properties of active pharmaceutical ingredients (APIs) in the solid state is important, because these properties are directly related to their pharmacological activity. Several methods are available for this purpose. Solid-state NMR spectroscopy offers a nondestructive and flexible technique, providing both structural and dynamic information. It can be applied to every solid physical state (both crystalline and amorphous) as well as to materials with different compositions. The current article aims at gathering together some of the recent and most important studies in the area of high-resolution solid-state NMR spectroscopy of steroids and their derivatives completed with related theoretical reports not forgetting to outline the future remarks.  相似文献   

5.
The properties of materials largely reflect the degree and character of the localization of the molecules comprising them so that the study and characterization of particle localization has central significance in both fundamental science and material design. Soft materials are often comprised of deformable molecules and many of their unique properties derive from the distinct nature of particle localization. We study localization in a model material composed of soft particles, hard nanoparticles with grafted layers of polymers, where the molecular characteristics of the grafted layers allow us to “tune” the softness of their interactions. Soft particles are particular interesting because spatial localization can occur such that density fluctuations on large length scales are suppressed, while the material is disordered at intermediate length scales; such materials are called “disordered hyperuniform”. We use molecular dynamics simulation to study a liquid composed of polymer‐grafted nanoparticles (GNP), which exhibit a reversible self‐assembly into dynamic polymeric GNP structures below a temperature threshold, suggesting a liquid‐gel transition. We calculate a number of spatial and temporal correlations and we find a significant suppression of density fluctuations upon cooling at large length scales, making these materials promising for the practical fabrication of “hyperuniform” materials.  相似文献   

6.
Alberto Striolo 《Molecular physics》2019,117(23-24):3556-3568
Gas hydrates continue to attract enormous attention throughout the energy industry, as both a hindrance in conventional production and a substantial unconventional resource. Scientists continue to be fascinated by the hydrates’ ability of sequestering large amounts of hydrophobic gases, unusual thermal transport properties and unique molecular structures. Technologically, clathrate hydrates promise advantages in applications as diverse as carbon sequestration and water desalination. The communities interested in hydrates span traditional academic disciplines, including earth science, physical chemistry and petroleum engineering. The studies on this field are equally diverse, including field expeditions to attempt the production of natural gas from hydrate deposits accumulated naturally on the seafloor, to lab-scale studies to exchange CO2 for CH4 in hydrates; from theoretical studies to understand the stability of hydrates depending on the guest molecules, to molecular simulations probing nucleation mechanisms. This review highlights a few fundamental questions, with focus on knowledge gaps representing some of the barriers that must be addressed to enable growth in the practical applications of hydrate technology, including natural gas storage, water desalination, CO2 – CH4 exchange in hydrate deposits and prevention of hydrate plugs in conventional energy transportation.  相似文献   

7.
Clathrate hydrates are nanoporous crystalline materials made of a network of hydrogen-bonded water molecules (forming host cages) that is stabilized by the presence of foreign (generally hydrophobic) guest molecules. The natural existence of large quantities of hydrocarbon hydrates in deep oceans and permafrost is certainly at the origin of numerous applications in the broad areas of energy and environmental sciences and technologies (e.g. gas storage). At a fundamental level, their nanostructuration confers on these materials specific properties (e.g. their ??glass-like?? thermal conductivity) for which the host-guest interactions play a key role. These interactions occur on broad timescale and thus require the use of multi-technique approach in which neutron scattering brings unvaluable information. This work reviews the dynamical properties of clathrate hydrates, ranging from intramolecular vibrations to Brownian relaxations; it illustrates the contribution of neutron scattering in the understanding of the underlying factors governing chemical-physics properties specific to these nanoporous systems.  相似文献   

8.
The present paper reviews works devoted to control over the properties of epitaxial GaAs by incorporation of excess (non-stoichiometric) arsenic into the GaAs films grown by molecular-beam epitaxy (MBE) at low-temperature (LT). The effect of excess arsenic on the material structure and properties is analyzed for both as-grown and annealed LT-GaAs layers. The effect of doping on the incorporation of excess arsenic is also examined. The data on the effect of excess arsenic on the properties of the Ga0.47In0.53As solid solution are presented. The specific features of the mechanism of the excess arsenic incorporation into the solid phase during the low-temperature epitaxial growth are discussed.  相似文献   

9.
ABSTRACT

We report extensive molecular dynamics simulation results of pure methane and carbon dioxide hydrates at pressure and temperature conditions that are of interest to various practical applications. We focus on the calculation of the lattice constants of the two pure hydrates and their dependence on pressure and temperature. The calculated lattice constants are correlated using second order polynomials which are functions of either temperature or pressure. Finally, the obtained correlations are used in order to calculate two derivative properties, namely the isothermal compressibility and the isobaric thermal expansion coefficient. The current simulation results are also compared against reported experimental measurements and other simulation studies and good agreement is found for the case of isothermal compressibility. On the other hand, for the case of isobaric thermal expansion coefficient good agreement is found only with other simulation studies, while the simulation studies are in disagreement with experiments, particularly at low temperatures.  相似文献   

10.
Methane hydrates are encountered in a plethora of industrial and geological or environmental applications. In the current study, we present a novel methodology which is based on molecular dynamics simulations for the calculation of the enthalpy of enclathration of sI methane hydrates. Simulations are performed along the three-phase (Hydrate – Liquid water – Vapour; H–Lw–V) equilibrium line in the temperature range 274–310?K. The methodology takes into account the two different types of cages that are present in the sI methane hydrate and provides results for the enthalpy of enclathration for both types of cages, while it avoids performing calculations with the metastable, completely empty hydrate lattice. The formulation proposed is general and can be also applied to sII hydrates, while it can be modified/extended appropriately for use in the case of sH hydrates. Comparison is provided with available data from the literature and good agreement is observed.  相似文献   

11.
Kurtz-Chalot  A.  Klein  J. P.  Pourchez  J.  Boudard  D.  Bin  V.  Alcantara  G. B.  Martini  M.  Cottier  M.  Forest  V. 《Journal of nanoparticle research》2014,16(11):1-15
Methods for the facile and in-line characterization of size distribution and physical properties of unsupported nanoparticles are of paramount importance for fundamental research and industrial applications. The state-of-the-art free nanoparticle characterization methods do not provide accuracy, high throughput, and operation easiness to support widespread use for routine characterization. In this perspective paper, we describe and discuss the opportunities provided by approaches for nanoparticle characterization based on optical measurements of the field scattered by particles. In particular, we show how insightful is the measure of both the real and the imaginary parts of the field amplitude, a task that has been considered in the past but never had a widespread exploitation. A number of opportunities are generated by this approach, in view of assessing a more efficient characterization and a better understanding of the properties of nanoparticles. We focus our attention on the capability of characterizing nanoparticles of wide interest for applications, considering cases where traditional approaches are not currently effective. Possible exploitations are both in research and in industrial environments: to validate a synthetic process, for example, or for in-line monitoring of a production plant to generate advanced process control tools, as well as decision-making tools for acting in real time during the production.  相似文献   

12.
13.
Abstract

The industrial application of kaolinite is closely related to its reactivity and surface properties. The reactivity of kaolinite can be tested by intercalation; that is, via the insertion of low-molecular-weight organic compounds between the kaolinite layers resulting in the formation of a nano-layered organo-complex. Although intercalation of kaolinite is an old and ongoing research topic, there is limited knowledge available on the reactivity of different kaolinites and the mechanism of complex formation, as well as on the structure of the complexes formed. Grafting and incorporation of exfoliated kaolinite in polymer matrices and other potential applications can open new horizons in the study of kaolinite intercalation. This article attempts to summarize (without completion) the most recent achievements in the study of kaolinite organo-complexes obtained with the most common intercalating compounds such as urea, potassium acetate, dimethyl sulphoxide, formamide, and hydrazine using vibrational spectroscopy combined with X-ray powder diffraction and thermal analysis.  相似文献   

14.
天然气水合物是蕴含着巨大能源潜力的非常规能源,2017年和2020年两次我国南海探索性试采的成功,加快了天然气水合物项目的进展。二氧化碳置换开采法,既能开发CH4,又能封存CO2。同时水合物法分离烟气中CO2具有很好的应用前景,而CO2在气体水合物的微观结构和特性尚不明确,实际应用存在一定的未知影响。为了考察其特性,利用13C固体核磁技术(NMR)和拉曼光谱(Raman)进行CO2置换CH4水合物、合成13CO2-H2-CP混合水合物实验表征,讨论CO2在水合物中的定量问题,研究CO2分子在笼型结构中的分布,探讨CO2分子在气体水合物中的结构类型和特性。结果表明:(1)利用Raman费米低频共振1 277.5 cm-1峰积分得到CO2在I型大笼(51262笼)的占有率为0.978 2,CH4在Ⅰ型小笼(512笼)和大笼(51262笼)的占有率为0.059 3和0.009 5,水合数7.61,Raman费米高频共振1 381.3 m-1峰积分得到CO2在51262笼的占有率为0.984 3,CH4在512笼和51262笼的占有率为0.023 7和0.003 3,水合数7.70,CO2几乎占满了大笼,CO2气体的加入会导致水合物中,CH4的大、小笼占有率均大幅度降低,置换后水合数略低于纯甲烷水合物,未标记的CO2水合物在核磁中较难测出信号,CO2气体置换后CH4在小笼的占有率仅0.097 5,大笼占有率为0.317 2,两种方法差异主要原因为核磁的CO2未出峰。(2)利用拉曼费米低频共振1 273.4 cm-1峰积分得到H2、CO2在512笼、CP在51262的占有率分别为0.124 8,0.304 2和0.997 8,水合数9.16;Raman费米高频共振1 380.6 cm-1峰积分得到H2、CO2在512笼、CP在51262的占有率分别为0.123 6,0.577 1和0.985 1,水合数7.12。13C标记CO2分子在水合物中达到较好的固体核磁分辨率,首次确认CO2在Ⅱ型小笼中的化学位移为124.8 ppm,计算得到CO2的小笼占有率为0.783 1,CP的大笼占有率为0.971 8,水合数6.70,Raman高频频费米共振峰(1 380.6 cm-1)定量计算与13C NMR结果更接近。(3)对CO2的13C NMR化学位移进行了归属,并结合Raman与13C NMR的对比分析,为CO2水合物的13C NMR研究和拉曼定量提供参考。  相似文献   

15.
Clathrate hydrates are particular solids that planetologists study in detail because those solids may be present in several bodies of the solar system, such as Mars, comets, and the icy satellites. The solids are formed by solid H2O, like common water ice, but adopt open structures with cavities containing gas molecules. Clathrate hydrates are usually stable at relatively low temperature and high pressure, which are the typical conditions present inside these planetary objects. Their interest for astrobiology is that they represent potential sources of liquid water and gases when they decompose. The present work is focused on the crystallization of clathrates in Europa's (icy satellite of Jupiter) interior conditions. We postulate that clathrate hydrates may play an important role in its crust mineralogy and that it can explain some features of the satellite's surface due to their formation/destabilization. An in situ kinetic study by Raman Spectroscopy of the clathrate formation from salty solutions was performed in our laboratory. The chemical composition that we used mimics those obtained from Europa's surface during the Galileo mission. An effect of the salting-out process in the solution was monitored through the clathrate formational path. Our results demonstrate that this process may have geological consequences on Europa and confirm the suitability of Raman spectroscopy for planetary detection of clathrate hydrates and other ices.  相似文献   

16.
ABSTRACT

Confinement of fluids in porous media leads to the presence of solid–fluid (SF) interfaces that play a key role in many different fields. The experimental characterisation of SF interfacial properties, in particular the surface tension, is challenging or not accessible. In this work, we apply mean-field density functional theory (DFT) to determine the surface tension and also density profile of a Lennard-Jones fluid in slit-shaped pores for realistic amounts of adsorbed molecules. We consider the pore walls to interact with fluid molecules through the well-known 10-4-3 Steele potential. The results are compared with those obtained from Monte Carlo simulations in the Grand Canonical Ensemble (GCMC) using the test-area method. We analyse the effect on the adsorption and interfacial phenomena of volume and energy factors, in particular, the pore diameter and the ratio between SF and fluid–fluid dispersive energy parameters, respectively. Results from DFT and GCMC simulations were found to be comparable, which points to their reliability.  相似文献   

17.
Silicon carbide (SiC) nanotubes have attracted extensive attention due to the unique properties. Modifying the electronic properties of SiC nanotubes is helpful for further widening their potential applications. In this paper, we have studied the chemisorption of NO2 molecules at different coverage on a series of SiC nanotubes through density functional theory (DFT) calculations. The results indicate that changes in energetic, structural and electronic properties of the SiC nanotubes are significantly dependent on the coverage of adsorbed NO2 molecules: (1) a nitrite-like structure is obtained for an odd number of NO2 molecules adsorption on the SiC nanotube, while an even number of NO2 molecules adsorption leads to a nitro-like configuration; (2) the adsorption energy per NO2 molecule for even number adsorption is larger than that of odd number, suggesting that the NO2 groups prefer the pair arrangement due to the coupling of two radicals; (3) with the increase of the coverage of the adsorbed NO2, the band-gaps of SiC nanotubes are decreased, thus leading to the enhancement of the electro-conductivity of SiC nanotubes. Our results might provide an alternative strategy to modify the properties of SiC nanotubes, which might be useful for the design of SiC nanotubes-based nanodevices.  相似文献   

18.
Metal oxides play an essential role in modern optoelectronic devices because they have many unique physical properties such as structure diversity, superb stability in solution, good catalytic activity, and simultaneous high electron conductivity and optical transmission. Therefore, they are widely used in energy-related optoelectronic applications such as photovoltaics and photoelectrochemical(PEC) fuel generation. In this review, we mainly discuss the structure engineering and defect control of oxides for energy applications, especially for transparent conducting oxides(TCOs) and oxide catalysts used for water splitting. We will review our current understanding with an emphasis on the contributions of our previous theoretical modeling, primarily based on density functional theory. In particular, we highlight our previous work:(i) the fundamental principles governing the crystal structures and the electrical and optical behaviors of TCOs;(ii) band structures and defect properties for n-type TCOs;(iii) why p-type TCOs are difficult to achieve;(iv) how to modify the band structure to achieve p-type TCOs or even bipolarly dopable TCOs;(v) the origin of the high-performance of amorphous TCOs; and(vi) band structure engineering of bulk and nano oxides for PEC water splitting. Based on the understanding above, we hope to clarify the key issues and the challenges facing the rational design of novel oxides and propose new and feasible strategies or models to improve the performance of existing oxides or design new oxides that are critical for the development of next-generation energy-related applications.  相似文献   

19.
We present a mesoscopic model for simulating the dynamics of a non-volatile liquid on a solid substrate. The wetting properties of the solid can be tuned from complete wetting to total non-wetting. This model opens the way to study the dynamics of drops and liquid thin films at mesoscopic length scales of the order of the nanometer. As particular applications, we analyze the kinetics of spreading of a liquid drop wetting a solid substrate and the dewetting of a liquid film on a hydrophobic substrate. In all these cases, very good agreement is found between simulations and theoretical predictions.  相似文献   

20.
A simple computer model of dissociative adsorption of diatomic molecules on a solid surface with laser-induced defects was proposed. The defects (ablation craters) were assumed to have either cubicoid or pyramidal shape, depending on the approximation level. Special attention was paid to the influence of a degree of structural disorder on the adsorptive properties of the surface. In particular, both equilibrium adsorption isotherms and temperature programmed desorption (TPD) spectra of non-interacting diatomic molecules from the surfaces subjected to a different number of laser pulses were simulated. The observed changes in the adsorptive properties of the surface were explained using simple geometric arguments linking the adsorption probability for a single molecule with the topography of the surface. For example, it was demonstrated that, for a sufficiently large number of laser pulses (N), the adsorption probability scales with , regardless of the assumed crater shape. The obtained results also indicate that, in general, the surface roughness greatly affects the TPD spectra while it has minor influence on the shape of the adsorption isotherms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号