首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple method using gas chromatography-mass spectrometry was applied to analyse structures of ceramides. Identification of trimethylsilylated ceramides were obtained in short analysis times (derivatization of ceramides in 30 min at room temperature and 20 min gas chromatography mass spectrometry run) even for complex mixtures. For example in ceramide Type III, 18 peaks were observed which represent 27 various structures. The coeluted compounds were ceramides containing the same functional groups and the same carbon number but with a different distribution on the two alkyl chains of the molecule. They were accurately differentiated by mass spectrometry. Therefore, 83 structures of trimethylsilylated ceramides were identified in 11 different commercial mixtures. For 52 structures of these, mass spectral data were not described in the literature, neither full mass spectra nor characteristic fragments.  相似文献   

2.
Negative-ion electrospray ionization tandem quadrupole mass spectrometry provides a useful method for the structural characterization of ceramides. Fragment ions referring to the identities of the fatty acid substituent and of the long chain base of the molecules are readily available and the structure of ceramides can be easily determined. A unique fragmentation pathway which leads to formation of the fatty acid carboxylate anions (RCO2) was observed. This fragmentation is initiated by cleavage of the C2-C3 bond of the LCB to yield a N-acylaminoethanol anion ([RCONHCH2CH2O]-), followed by rearrangement to a carboxyethylamine ([RCO2CH2CH2NH]-) intermediate, which further dissociates to a RCO2- ion. This pathway is confirmed by the CAD tandem mass spectrum of the synthetic N-acylaminoethanol standard and of the deuterated analogs of ceramides obtained by H-D exchange. The observation of RCO2- ion species permits an unambiguous identification of the fatty acyl moiety of ceramides. Tandem mass spectrometry methods for characterization of structural isomers of ceramides using product-ion scanning and for identification of specific ceramide subclasses in biological mixtures using neutral loss scanning are also demonstrated.  相似文献   

3.
Six fractions containing tri- to pentaglycosylceramides were isolated from the green, fresh water alga Chlorella kessleri, grown heterotrophically, by using preparative high-performance liquid chromatography (HPLC). Up to twelve fractions were obtained by further reversed-phase HPLC of each glycosylceramide. The use of a polar capillary column with Supelcowax 10 as the stationary phase allowed an excellent separation of the individual molecular species of ceramides, even though the separation did not occur when the ceramides differed only in the position of the amide bond. The individual molecular species (even if present in mixtures) were identified by gas chromatography-chemical ionization mass spectrometry. The evidence for a complete structure was obtained by enzyme splitting with alpha- and beta-galactosidases (the sequence of monosaccharides) and by negative ionization fast atom bombardment mass spectrometry. More than 400 molecular species of glycosylceramides were identified.  相似文献   

4.
皱瘤海鞘的化学成分研究   总被引:7,自引:0,他引:7  
王超杰  苏镜娱  曾陇梅 《分析化学》2001,29(11):1311-1314
从中国广东惠州大亚湾海域采集的皱瘤海鞘的甲醇-氯仿提取物中分离出混合甾醇和神经酰胺两类化合物,混合甾醇经波谱分析和GC/MS联机分析,发现基主要由9种甾醇组成,含量约为甲醇-氯仿提取物的20%。通过波谱分析(如IR,^1HNMR,^13CNMR(DEPT)、^1H-^1H COSY、RCT、FABMS)和GC/MS分析证明神经酰胺结构是由4个同系物组成,含量为提取物的0.1%。同时也初步探讨了共生的皱瘤海鞘与冠瘤海鞘化学成分差异的原因。  相似文献   

5.
A rapid, sensitive and selective method involving reversed-phase liquid chromatography (LC) with electrospray ionization (ESI) mass spectrometry (MS) was employed for determination of commercial ceramides in cosmetics for quality control of the product formulation. Using this LC/ESI-MS technique, simultaneous separation and characterization of ceramides and an impurity substance were possible. Informative fragmentation patterns were obtained by employing LC/ESI-MS in both positive and negative ionization modes to identify the structures of both sphingoid base and N-acyl chains of ceramides, and also of an impurity. The combination of positive and negative mass spectra can be used for unambiguous confirmation of ceramides and for characterization of unknown species. In-source collision-induced fragmentation resulted in characteristic product anions for the ceramides containing a phytosphingosine moiety at m/z 267, 255 and 225, and for those with a sphingosine moiety at m/z 263 and 237, regardless of the length of the fatty acyl chains. The detection limit was about 0.5 pmol in selected-ion monitoring mode. Quantification using internal standards showed good linearity and a relative standard deviation of 4%. These ceramides were more sensitively detected in positive than in negative ion mode.  相似文献   

6.
The stratum corneum (SC) is the outermost layer of skin that functions as a barrier and protects against environmental influences and transepidermal water loss. Its unique morphology consists of keratin-enriched corneocytes embedded in a distinctive mixture of lipids containing mainly ceramides, free fatty acids, and cholesterol. Ceramides are sphingolipids consisting of sphingoid bases, which are linked to fatty acids by an amide bond. Typical sphingoid bases in the skin are composed of dihydrosphingosine (dS), sphingosine (S), phytosphingosine (P), and 6-hydroxysphingosine (H), and the fatty acid acyl chains are composed of non-hydroxy fatty acid (N), α-hydroxy fatty acid (A), ω-hydroxy fatty acid (O), and esterified ω-hydroxy fatty acid (E). The 16 ceramide classes include several combinations of sphingoid bases and fatty acid acyl chains. Among them, N-type ceramides are the most abundant in the SC. Mass spectrometry (MS)/MS analysis of N-type ceramides using chip-based direct infusion nanoelectrospray-ion trap mass spectrometry generated the characteristic fragmentation pattern of both acyl and sphingoid units, which could be applied to structural identification of ceramides. Based on the MS/MS fragmentation patterns of N-type ceramides, comprehensive fragmentation schemes were proposed. In addition, mass fragmentation patterns, which are specific to the sphingoid backbone of N-type ceramides, were found in higher m/z regions of tandem mass spectra. These characteristic and general fragmentation patterns were used to identify N-type ceramides in human SC. Based on established MS/MS fragmentation patterns of N-type ceramides, 52 ceramides (including different classes of NS, NdS, NP, and NH) were identified in human SC. The MS/MS fragmentation patterns of N-type ceramides were characterized by interpreting their product ion scan mass spectra. This information may be used to identify N-type ceramides in the SC of human, rat, and mouse skin.  相似文献   

7.
Summary A sensitive, selective, and rapid method is described for analysis of ceramides in the human stratum coracum by direct coupling of HPLC with an electrospray ion-trap mass spectrometry. Nonaqueous reversed-phase chromatography stabilizes the electrospray ionization, resulting in sensitivity that enables direct measurement of skin lipid extracts with no special sample preparation. Assignment of individual signals to the corresponding ceramide species is based on interpretation of the fragment spectra from MS-MS experiments. This enables much finer differentiation between ceramdies than that achievable by thin-layer chromatography. Summary A sensitive, selective, and rapid method is described for analysis of ceramides in the human stratum corneum by direct coupling of HPLC with an electrospray ion-trap mass spectrometry. Nonaqueous reversed-phase chromatography stabilizes the electrospray ionization, resulting in sensitivity that enables direct measurement of skin lipid extracts with no special sample preparation. Assignment of individual signals to the corresponding ceramide species is based on interpretation of the fragment spectra from MS-MS experiments. This enables much finer differentiation between ceramides than that achievable by thin-layer chromatography.  相似文献   

8.
Ceramides are important intracellular second messengers that play a role in the regulation of cell growth, differentiation and programmed cell death. Qualitative and quantitative analysis of these second messengers requires sensitive and specific analytical methods to detect endogenous levels of individual ceramide species and to differentiate between them. Nine synthetic ceramides were separated by liquid chromatography coupled to tandem mass spectrometry on a C18 bonded silica column. The lipids were eluted in gradient elution mode using a mixture of water, acetonitrile and 2-propanol as mobile phase. They were detected by reaction monitoring performed on positive ion electrospray generated ions. Collision-induced fragmentations conducted on ceramides produced a well characteristic product ion at m/z 264, making multiple reaction monitoring (MRM) well suited for various ceramides quantitative measurements. After optimization of the extraction step, the proposed methodology was able to identify and quantify different ceramide species issued from human cancer cells. The method could be validated for C16, C18 and C20 ceramides, quantified at the nanogram level. The validation exhibits good results with respect to linearity, accuracy and precision.  相似文献   

9.
The fragmentation of fragile ions during the application of an isolation waveform for precursor ion selection and the resulting loss of isolated ion intensity is well‐known in ion trap mass spectrometry (ITMS). To obtain adequate ion intensity in the selected reaction monitoring (SRM) of fragile precursor ions, a wider ion isolation width is required. However, the increased isolation width significantly diminishes the selectivity of the channels chosen for SRM, which is a serious problem for samples with complex matrices. The sensitive and selective quantification of many lipid molecules, including ceramides from real biological samples, using a linear ion trap mass spectrometer is also hindered by the same problem because of the ease of water loss from protonated ceramide ions. In this study, a method for the reliable quantification of ceramides using SRM with near unity precursor ion isolation has been developed for ITMS by utilizing alternative precursor ions generated by in‐source dissociation. The selected precursor ions allow the isolation of ions with unit mass width and the selective analysis of ceramides using SRM with negligible loss of sensitivity. The quantification of C18:0‐, C24:0‐ and C24:1‐ceramides using the present method shows excellent linearity over the concentration ranges from 6 to 100, 25 to 1000 and 25 to 1000 nM, respectively. The limits of detection of C18:0‐, C24:0‐ and C24:1‐ceramides were 0.25, 0.25 and 5 fmol, respectively. The developed method was successfully applied to quantify ceramides in fetal bovine serum. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
We applied electrospray ionization (ESI) tandem quadrupole mass spectrometry to establish the fragmentation pathways of ceramides under low energy collisional-activated dissociation (CAD) by studying more than thirty compounds in nine subclasses. The product-ion spectra of the [M + Li]+ ions of ceramides contain abundant fragment ions that identify the fatty acyl substituent and the long-chain base (LCB) of the molecules, and thus, the structure of ceramides can be easily determined. Fragment ions specific to each ceramide subclasses are also observed. These feature ions permit differentiation among different ceramide subclasses. The ion series arising from the classical C-C bond cleavages that were reported in the fast-atom bombardment (FAB)-high energy tandem mass spectrometry is not observable; however, the product-ion spectra contain multiple fragment ions informative for structural characterization and isomer identification. We also investigated the tandem mass spectra of the fragment ions generated by in-source CAD (pseudo-MS3) and of the deuterium-labeling molecular species obtained by H/D exchange to support the ion structure assignments and the proposed fragmentation pathways that lead to the ion formation.  相似文献   

11.
Because of poor aqueous solubility and lack of UV chromophores, the characterization of long-chain hydrocarbons and ceramides by conventional UV and mass spectrometric methods has not been successful. Therefore, a novel coaxial electrospray ionization method was developed for characterizing reaction products of phytosphingosine and hexacosanoic acid in toluene and tetrahydrofuran (THF), by high resolving power Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). Simultaneous spraying of a solution of apolar analytes and polar reagents into the gas phase readily enabled protonation and/or sodiation of analyte with enhanced signal-to-noise (S/N). Sample introduction was by direct infusion such that the sprayers were arranged either along the instrument line-of-sight (for monospray and coaxial spray modes) or in a 45 degrees configuration for dual-spray mode. For dual-spray and coaxial spraying, p-toluenesulphonic acid was used as a reagent and sprayed simultaneously with the analyte dissolved in toluene or THF. Compounds were characterized by accurate mass measurement of the protonated and/or sodiated molecules.  相似文献   

12.
Sphingolipids, such as ceramides and cerebrosides, are important molecules in the formation and maintenance of the epidermal barrier to water vapor diffusion. In this paper we explore a new method to identify the sphingolipids found in the stratum corneum (SC), the outer layer of the epidermis, of House sparrows living in Saudi Arabia using reversed-phase high-performance liquid chromatography (HPLC) coupled with atmospheric pressure photo-ionization mass spectrometry (APPI-MS). First, using thin layer chromatography (TLC) we found that the SC contains ceramides, cerebrosides, and free fatty acids along with smaller amounts of cholesterol. Knowing the classes of sphingolipids present in the SC markedly reduced the number of possible molecules present. Then, we identified each sphingolipid molecule in our sample by both negative and positive mode of APPI-MS. We confirmed our identifications by generation of accurate mass data, and by examination of MS/MS spectra for selected molecules. Using APPI-MS, we identified 7 families of cerebrosides, for a total of 97 molecular species, and 4 families of ceramides, for a total of 79 molecules, in the SC of House sparrows, a wider array than would be found in mammals. Carbon chain lengths of fatty acids in the sphingolipids were longer than those that have been reported for mammalian SC; chain lengths of over 40 carbons were common. We also compared our estimates of the quantity of lipids in the SC obtained by HPLC/MS with those from TLC. Estimates of the amount of total ceramides and cerebrosides using TLC differed from those obtained by HPLC/MS by +0.95% and -2.5%, respectively. We conclude that our protocol using reversed-phase HPLC and APPI-MS is an useful method of analyzing complex mixtures of sphingolipids in the SC.  相似文献   

13.
Many bacteria have been shown to bind to the carbohydrate part of glycosphingolipids, but also the lipid moieties of receptor-active glycolipids are of importance. To investigate the chemistry of the ceramides of kidney glycolipids to which the uropathogenic Escherichia coli bind, different mass spectrometric techniques were utilized. First, a mixture of glycolipids isolated from man and mice kidney was separated by thin-layer chromatography (TLC) and scanned by direct desorption from the plate by fast atom bombardment mass spectrometry (TLC/FAB-MS). Second, the glycolipids were purified by preparative TLC and analyzed by negative-ion FAB-MS. After methylation, further analyses were made with positive-ion FAB-MS, positive-ion electron ionization (EI)-MS, high-temperature capillary gas chromatography (GC/EI-MS) and positive-ion matrix-assisted laser desorption/ionization (MALDI)-MS. The ceramide compositions of the four glycolipids were determined using all these MS techniques and the reliability of the different methods for this type of analyses is discussed. Comparison of the mouse kidney glycolipids with the corresponding glycolipids from human kidney showed the same degree of hydroxylation of ceramides among mono- and disaccharide glycolipids, but a significantly higher degree of hydroxylation among mouse kidney glycolipids with three and four sugar residues. This result might be of relevance for the binding of P-fimbriated E. coli to the urinary tract tissues.  相似文献   

14.
Two new N-acylsphingosines (ceramides) named longifoamide A {6'-tetracosenamide, (6'-Z)-N-[2,3-dihydroxy-1-(hydroxymethyl)octadecyl]} and B {6'-tetracosenamide, (6'-Z)-N-[2,3,4-trihydroxy-1-(hydroxymethyl)octadecyl]} were isolated from a methanol extract of Mentha longifolia. Both ceramides were characterized with the aid of 1D and 2DNMR spectroscopic techniques and high resolution mass spectrometry.  相似文献   

15.
This article reviews the analysis of 31 drugs and drug metabolites in human hair by thin-layer chromatography, high-performance liquid chromatography, gas chromatography, gas chromatography-mass spectrometry and mass spectrometry. The most important detection method after chromatographic separation of the components is the mass spectrometry because of its sensitivity and specificity. Washing steps to exclude external contamination, extraction, derivatization, stationary phases, detection modes and detection limits of the mass spectrometric and gas chromatographic-mass spectrometric procedures are presented in five tables. Additionally, a method for a gas chromatographic-mass spectrometric screening procedure is presented.  相似文献   

16.
We developed a simple and reliable analytical method for the quantification and the characterization of ceramides extracted from biological samples by high-performance liquid chromatography (HPLC) coupled to electrospray ionisation tandem mass spectrometry (ESI/MS/MS). The chromatographic separation of analytes was carried out in a RP8 column, eluting with a methanol-water mixture in gradient elution mode. The separated lipids were detected by total ion monitoring and characterised by MS/MS spectra; quantitative analysis was performed by integrating the extracted ion peaks obtained in the negative ion mode. Good repeatability was obtained for retention time (0.3-2%), peak area ratio (A(S)/A(IS), 2-8%), as well as limit of detection (LOD, 5-26 pg) and quantification (LOQ, 13-53 pg). The method was validated for the analysis of N-palmitoyl-D-erythro-sphingosine (Cer16), N-stearoyl-D-erythro-sphingosine (Cer18), N-tetracosanoyl-D-erythro-sphingosine (N24:0, lignoceric ceramide, Cer24:0), and N-tetracos-15'-enoyl-D-erythro-sphingosine (N24:1, nervonic ceramide, Cer24:1), giving good results. Lipid mixtures, extracted from skin and epidermal cells, were analysed for their content of the studied ceramides.  相似文献   

17.
Lipidomics is an emerging field of science not only due to its integral part of cell biology and biophysics but also due to the key role of lipids in the modulation of membrane physical properties, signaling, and cell death regulation. The aim of this study was to characterize changes in N-palmitoyl ceramide concentration and in the global lipid profile in macrophages challenged by oxidized low-density lipoprotein and nutrient deprived hepatocytes. For this purpose, a quantitative targeted method based on gas chromatography-mass spectrometry for the determination of total N-palmitoyl ceramide concentrations in the cellular membranes of cells under stress was used. Ultrahigh-performance liquid chromatography-quadrupole-time of flight mass spectrometry was applied for the comprehensive profiling of lipids. In essence, we found that both models of cellular stress caused an increase in N-palmitoyl ceramide levels. In addition, increased levels of other ceramides were observed as well as up- and down-regulation of several other lipid species.  相似文献   

18.
Ten ceramides and four cerebrosides were extracted from the starfish Distolasterias nipon by solvent extraction, silica gel column chromatography and reversed‐phase high‐performance liquid chromatography. Structural identification was conducted using tandem mass spectrometry of monosodiated ions desorbed by fast atom bombardment. The complete structures of four cerebrosides were determined by a previously reported method. The high‐energy collision‐induced dissociation (CID) spectral characteristics of ceramides with various structures depend on the number and positions of double bonds on both the N‐acyl and sphingoid chains, the presence of a hydroxyl group or a double bond at the C‐4 position of the sphingoid chain and the presence of an α‐hydroxy group on the N‐acyl chain. The high‐energy CID of the monosodiated ion, [M+Na]+, of each ceramide molecular species generated abundant ions, providing information on the composition of the fatty acyl chains and sphingoid long‐chain bases. Each homologous ion series along the fatty acyl group and aliphatic chain of the sphingoid base was used for locating the double‐bond positions of both chains and hydroxyl groups on the sphingoid base chain. The double‐bond positions were also confirmed by the m/z values of abundant allylic even‐ and odd‐electron ions, and the intensity ratio of the T ion peak relative to the O ion peak. This technique could determine the complete structures of ceramides and cerebrosides in an extract mixture and has great potential for determining other sphingolipids isolated from various biological sources. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
A method for the determination of organic chlorides in hydrogen for fuel cell vehicles by gas chromatography coupled with ion mobility spectrometry was established. Organic chlorides were separated by a non-polar gas chromatography column and detected in the negative ion mode of the ion mobility spectrometer. The effect of operating parameters of ion mobility spectrometer including drift gas flow rate and drift tube temperature on sensitivity and resolution were evaluated. Under the optimized conditions, the detection limits of seven organic chlorides were from 0.65 to 6.73 nmol/mol, which met the requirement of detection for the specification limit of 50 nmol/mol of total halogen impurities in hydrogen for fuel cell vehicles. Compared with gas chromatography-mass spectrometry, and gas chromatography coupled with electron capture detector under the same gas chromatography conditions, gas chromatography coupled with ion mobility spectrometry method demonstrated higher sensitivity for detection of organic chlorides under study. Based on the portability of the device and its detection capabilities, gas chromatography coupled with ion mobility spectrometry has the potential to perform online detection of impurities in hydrogen for fuel cell vehicles.  相似文献   

20.
Cortex Fraxini is an important traditional Chinese medicine. In this work, a rapid and reliable homogenate extraction method was applied for the fast extraction for Cortex Fraxini, and the method was optimized by response surface methodology. Ultra high performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry and gas chromatography with mass spectrometry were established for the separation and characterization of the constituents of Cortex Fraxini. Liquid chromatography separation was conducted on a C18 column (150 mm × 2.1 mm, 1.8 μm), and gas chromatography separation was performed on a capillary with a 5% phenyl‐methylpolysiloxane stationary phase (30 m × 0.25 mm × 0.25 mm) by injection of silylated samples. According to the results, 33 chemical compounds were characterized by liquid chromatography with mass spectrometry, and 11 chemical compounds were characterized by gas chromatography with mass spectrometry, and coumarins were the major components characterized by both gas chromatography with mass spectrometry and liquid chromatography with mass spectrometry. The proposed homogenate extraction was an efficient and rapid method, and coumarins, phenylethanoid glycosides, iridoid glycosides, phenylpropanoids, and lignans were the main constituents of Cortex Fraxini. This work laid the foundation for further study of Cortex Fraxini and will be helpful for the rapid extraction and characterization of ingredients in other traditional Chinese medicines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号