首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liang Y  Yuan D  Li Q  Lin Q 《Analytica chimica acta》2006,571(2):184-190
Solid-phase extraction technique had been applied to extract molybdophosphoric heteropoly acid (MoP) paired with cetyltrimethylammonium bromide (CTAB) from seawater matrix using C18 sorbent. Chemiluminescence emission could be generated via MoP reaction with alkaline luminol. Based on these, a novel on-line solid-phase extraction method coupled with flow injection (FI) analysis and luminol chemiluminescence detection had been established to determine ultratrace orthophosphate in seawater. The MoP-CTAB compound could be efficiently extracted on an in-line Sep-Pak C18 cartridge, and rapidly eluted by 0.3 mol l−1 sulphuric acid-ethanol solution. Then the compound was reduced by luminol to produce chemiluminescence light, which could be detected using a luminescence analyzer. Experimental parameters were optimized using a univariate experimental design. Using artificial seawater with salinity of 35 as a matrix, the standard curve with a linear range between 0.005 and 0.194 μmol l−1 had been obtained, and the recovery and the detection limit of the proposed method were found to be 92.5% and 0.002 μmol l−1, respectively. The relative standard deviation (R.S.D.), which was determined over eight hour, was 4.66% (n = 7) for the artificial seawater at a concentration of 0.097 μmol l−1 orthophosphate. Si of 200 μmol l−1 would not interfere with the detection of 0.012 μmol l−1 orthophosphate compound. Three typical seawater samples were analyzed using both the proposed method and the magnesium hydroxide-induced coprecipitation (MAGIC) method, and the results of the two methods showed no significant difference using the t test. Compared to the MAGIC method, the proposed method was more sensitive, time saving and easy for on-line analysis.  相似文献   

2.
This work reports a novel flow injection (FI) method for the determination of captopril, 1-[(2S)-3-mercapto-2-methylpropionyl]-l-proline (CPL), based on the enhancement CPL affords on the chemiluminescence (CL) reaction between luminol and hydrogen peroxide. For this purpose alkaline luminol and hydrogen peroxide solutions were mixed online, the sample containing CPL was injected into an aqueous carrier stream, mixed with the luminol-hydrogen peroxide stream and pumped into a glass flow cell positioned in front of a photomultiplier tube (PMT). The increase in the CL intensity was recorded in the form of FI peaks, the height of which was related to the CPL mass concentration in the sample. Different chemical and instrumental parameters affecting the CL response were investigated. Under the selected conditions, the log-log calibration curve was linear in the range 5-5000 μg l−1 of CPL, the limit of detection was 2 μg l−1 (at the 3σ level), the R.S.D., sr was 3.1% at the 100 μg l−1 level (n=8) and the sampling rate was 180 injections h−1. The method was applied to the determination of CPL in pharmaceutical formulations with recoveries in the range 100±3%.  相似文献   

3.
A chemiluminescence (CL) flow system for determination of thyroxine (Thy) is presented. It is based on the catalytic effect of cobalt(II) on the CL reaction between luminol and hydrogen peroxide. The iodinated chemical structure of Thy causes a heavy atom effect. The luminol CL signals show significant quenching by Thy. The calibration graph for Thy is linear for 15-70 μg ml−1 and the 3σ detection limits are 27 μg ml−1 for d-Thy and 23 μg ml−1 for l-Thy.  相似文献   

4.
A simple, sensitive and selective method for the determination of bromide in seawater by using a flow injection/stopped-flow detection technique was examined. The detection system was developed for a new kinetic-spectrophotometric determination of bromide in the presence of chloride matrix without any extraction and/or separation. The detection was based on the kinetic effect of bromide on the oxidation of methylene blue (MB) with hydrogen peroxide in a strongly acidic solution. Large amounts of chloride could enhance the sensitivity of the method as an activator. The decolorisation of the blue color of MB was used for the spectrophotometric determination of bromide at 746 nm. A stopped-flow approach was used to improve the sensitivity of the measurement and provide good linearity of the calibration over the range of 0-3.2 μg ml−1 of bromide. The relative standard deviation was 0.74% for the determination of 2.4 μg ml−1 bromide (n = 5). The detection limit (3σ) was 0.1 μg ml−1 with a sampling frequency of 12 h−1. The influence of potential interfering ions was studied. The proposed method was applied to the determination of bromide in seawater samples and provided satisfactory results.  相似文献   

5.
A novel simple, sensitive and rapid kinetic-spectrophotometric method is proposed for the determination of trace amounts of bromide. The method is based on its catalytic effect on the oxidation of methylene blue (MB) by hydrogen peroxide in strongly acidic solution. The oxidation reaction is activated by large amounts of chloride and can be monitored spectrophotometrically by measuring the decrease in the absorbance of MB at 746 nm. The determination of bromide is performed by a fixed-time method at the first 100 s from the initiation of the reaction. Unlike other kinetic-spectrophotometric methods for the determination of bromide, the proposed method does not require heating the solution. Bromide can be determined in the range from 80 to 960 μg l−1 with the detection limit of 35 μg l−1. The relative standard deviation of ten replicate determination of 480 μg l−1 bromide was 1.4%. The influence of potential interfering ions was studied. The proposed method was satisfactorily applied to the determination of bromide in seawater without interfering effect from chloride ion.  相似文献   

6.
Myo-inositol hexakisphosphate (phytate) is a substance present in urine with an important role in preventing calcium renal calculi development. In spite of this, the use of urinary phytate levels on stone-formers’ evaluation and treatment is still notably restricted as a consequence of the enormous difficulty to analyze this substance in urine. In this paper, a simple procedure for routinary urinary phytate determination based on phosphorus determination through inductively coupled plasma atomic emission spectrometry is described.The method only requires a previous separation of phytate from other components by column anion exchange chromatography. The working linear range used was 0-2 mg l−1 phosphorus (0-7 mg l−1 phytate). The limit of detection was 64 μg l−1 of phytate and the limit of quantification was 213 μg l−1. The relative standard deviation (R.S.D.) for 1.35 mg l−1 phytate was 2.4%. Different urine samples were analyzed using an alternative analytical methodology based on gas chromatography (GC)/mass detection used for inositol determination (phytate was previously hydrolyzed), resulting both methods comparable using as criterion to assess statistical significance P<0.05.  相似文献   

7.
Ohno S  Teshima N  Sakai T  Grudpan K  Polasek M 《Talanta》2006,68(3):527-534
A sequential injection (SI) method in a lab-on-valve (LOV) format for simultaneous spectrophotometric determination of copper and iron has been devised. The detection chemistry is based on the complex formation of 2-(5-bromo-2-pyridylazo)-5-[N-n-propyl-N-(3-sulfopropyl)amino]aniline (5-Br-PSAA) with copper(II) and/or iron(II) at pH 4.6. Copper(II) reacts with 5-Br-PSAA to form the complex which has an absorption maximum at 580 nm but iron(III) does not react. In the presence of a reducing agent only iron(II)-5-Br-PSAA complex is formed and detected at 558 nm. Under the optimum experimental conditions, the determinable ranges are 0.1-2 mg l−1 for copper and 0.1-5 mg l−1 for iron, respectively, with a sampling rate of 18 h−1. The limits of detection are 50 μg l−1 for copper and 25 μg l−1 for iron. The relative standard deviations (n = 15) are 2% for 0.5 mg l−1 copper and 1.8% for 0.5 mg l−1 iron when determined in standard solutions. The recoveries range between 96 and 105% when determining 0.25-2 mg l−1 of copper and 0.2-5 mg l−1 of iron in artificial mixtures at copper/iron ratios of 1:10 to 5:1. The proposed SI-LOV method is successfully applied to the simultaneous determination of copper and iron in multi-element standard solution and in industrial wastewater samples.  相似文献   

8.
Manju Gupta 《Talanta》2007,71(3):1039-1046
The aim of present work was to optimize the experimental parameters in single drop microextraction under solution immersion (SDME) and headspace (HS-SDME) extraction modes for the determination of periodate using guaifenesine [3-(2′-methoxyphenoxy)-1,2-propane diol] and norephedrine (phenylpropanolamine) as new and alternative reagents for the Malaprade reaction. The reactions were complete within 5 min resulting in the formation of 2-(2′-methoxyphenoxy)-acetaldehyde and benzaldehyde, respectively. SDME/HS-SDME of oxidation products with 2 μl of anisole or 1 μl of toluene, respectively, has permitted the determination of periodate at μg l−1 concentration levels. The results indicated that HS-SDME (range 0.01-10 mg l−1, r2 = 0.9990; limit of detection 1.55 μg l−1) was more sensitive than SDME (range 0.05-50 mg l−1, r2 = 0.9984; limit of detection 3.42 μg l−1), and was inexpensive, rapid and convenient. Tolerance of excess of iodate has permitted the application of this method in the determination of ethylene glycol in motor oil; the average recovery on spiked sample was 98.6% with R.S.D. of 4.2%.  相似文献   

9.
This paper reports an indirect flow-injection (FI) method for the determination of the anti-hyperthyroid drugs methimazole and carbimazole in pharmaceuticals. The method was based on the inhibition that these thioimidazole drugs caused on the Cu(II)-catalysed chemiluminescence (CL) reaction between luminol and H2O2. The CL reaction was induced on-line and injection of the sample produced negative peaks as a result of the Cu(II) complexation by the analytes. The height of the FI peaks was proportional to the drug concentration in the sample. The linear range was 2-100 and 3-120 mg l−1 for methimazole and carbimazole, respectively. The relative standard deviation was 1.9% for methimazole and 2.1% for carbimazole at the 50 mg l−1 level (n=10). Common excipients present in pharmaceutical tablets were found not to interfere with the analysis. The method was applied to the determination of methimazole and carbimazole in pharmaceutical formulations with recoveries in the range 100±4%.  相似文献   

10.
A new method is proposed for the chemiluminescent determination of the pesticide 3-indolyl acetic acid by means of an flow injection analysis system. The chemiluminescence emission is obtained by oxidation of the analyte with Ce (IV) in nitric acid and presence of β-cyclodextrine.The continuous-flow method allows the determination of 159 samples h−1 of 3-indolyl acetic acid in an interval of concentrations over the range 0.5-15.0 mg l−1. The limit of detection was 0.1 μg l−1 and the R.S.D. (n, 17) at 2.0 mg l−1 of the pesticide level was 2.7%. The method was applied to water samples.  相似文献   

11.
A sensitive chemiluminescence (CL) method, based on the enhancive effect of cobalt(II) on the CL reaction between luminol and dissolved oxygen in a flow injection (FI) system, was proposed for determination of Vitamin B12. The increment of the CL intensity was proportional to the concentration of Vitamin B12, giving a calibration graph linear over the concentration from 2.0×10−10 to 1.2×10−6 g l−1 (r2=0.9992) with the detection limit of 5.0×10−11 g l−1 (3σ). At a flow rate of 2.0 ml min−1, a complete determination of Vitamin B12, including sampling and washing, could be accomplished in 0.5 min with the relative standard deviations (R.S.D.) of less than 5.0%. The proposed method was applied successfully to the determination of Vitamin B12 in pharmaceuticals, human serum, egg yolk and fish tissue.  相似文献   

12.
The on-line incorporation of cloud point extraction (CPE) to flow injection analysis (FIA) is modified to extract and preconcentrate metal species rapidly, avoiding the formation of hydrophobic complexes, using a mixed micellar medium. Coupling the procedure with chemiluminescence (CL) detection based on the catalytic activity of metal species on the luminol-hydrogen peroxide reaction and enhancing the signal with the presence of a micellar carrier containing bromide ions produces a powerful tool for the preconcentration and determination of metal species at ng l−1 levels. As an analytical demonstration ultratrace concentrations of chromium were conveniently detected and quantified in samples with a complex matrix such as seawater and wastewater. The figures of merit for the determination of chromium were: 0.9-1.6% R.S.D. (n=5) with detection and quantification limits 0.5 and 2.0 ng l−1, respectively. The calibration graph was rectilinear from 2 to 200 ng l−1 (r=0.9996, n=6). Several other metal ions were determined in ideal situations, with analogous results.  相似文献   

13.
Dielectric barrier discharge (DBD) at atmospheric pressure provides an efficient radiation source for the excitation of bromine and it is used for the first time for optical emission spectrometric (OES) detection of bromide and bromate. A portable DBD–OES system is developed for screening potential pollution from bromide and bromate in environmental waters. Bromide is on-line oxidized to bromine for in-situ generation of volatile bromine. Meanwhile, a helium stream carries bromine into the DBD micro-plasma for its excitation at a discharging voltage of 3.7 kV and optical emission spectrometric detection with a QE65000 charge-coupled device (CCD) spectrometer in the near-infrared spectral region. Similarly, the quantification of bromate is performed by its pre-reduction into bromide and then oxidized to bromine. The spectral characteristics and configuration of the DBD micro-plasma excitation source in addition to the oxidation vapor generation of bromine have been thoroughly investigated. With a sampling volume of 1 mL, a linear range of 0.05–10.0 mg L−1 is obtained with a detection limit of 0.014 mg L−1 by measuring the emission at 827 nm. A precision of 2.3% is achieved at 3 mg L−1 bromide. The system is validated by bromine detection in certified reference material of laver (GBW10023) at mg L−1 level, giving rise to satisfactory agreement. In addition, it is further demonstrated by screening trace bromide and bromate as well as spiking recoveries in a series of environmental water samples.  相似文献   

14.
The present paper is dealing with an analytical strategy based on coupling photodegradation, chemiluminescence and multicommutation continuous-flow methodology for the determination of the pesticide Propanil, a common herbicide. The pesticide solution is inserted as small segments sequentially alternated with segments of the solution for adjusting the suitable medium for the photodegradation. Both flow-rates (sample and medium) are adjusted to required time for photodegradation, 2.0 min; and then, the resulting solution is also sequentially inserted as segments alternated with segments of the oxidizing solutions system, 1.00 × 10−4 mol l−1 potassium permanganate in 2.00 mol l−1 sulphuric acid medium. The calibration range, from 10 μg l−1 to 25 mg l−1, resulted in a linear behaviour over the range 10 μg l−1-5 mg l−1 and fitting the linear equation: I = 780.30C + 95.28; correlation coefficient 0.9999. The limit of detection was 8 μg l−1 and the sample throughput 20 h−1. After testing the influence of a large series of potential interferents the method is applied to water samples obtained from different places and to one formulation. The method is valid for the determination of other pesticides from the same chemical family, namely: alachlor, flumetsulam, furalaxyl and ofurace. Calibration graphs, limits of detection, repeatability and determination in water samples are obtained for each reported pesticide.  相似文献   

15.
Two highly sensitive chemiluminescence (CL) systems are described. The method is based on the CL generated during the oxidation of luminol by N-bromosuccinimide (NBS) and N-chlorosuccinimide (NCS) in alkaline medium. The emission intensity is reduced by the presence of some surfactants at concentrations lower than critical micelle concentration (cmc).A new, simple, rapid and selective flow injection CL method for the determination of cationic surfactants such as dodecyltrimethylammonium bromide (DTAB), cetyltrimethylammonium bromide (CTAB) and cetylpyridinium chloride (CPC) is proposed. Their determinations are based on the reducing effect on the emission intensity of NBS-luminol and NCS-luminol chemiluminescent reactions. The effect of analytical and flow injection analysis (FIA) variables on these CL systems and on the determination of the cationic surfactants are discussed. The optimum parameters for the determination of cationic surfactants were studied and were found to be the following: luminol, 1×10−6 M; NBS and NCS both, 5×10−2 M; NaOH, 5×10−2 M and flow rate, 3.5 ml min−1.  相似文献   

16.
A.S. Alves Ferreira 《Talanta》2007,72(3):1223-1229
This paper deals on the determination of Strychnine, a potent and dangerous pesticide and the analytical procedure is based on the photo-induced chemiluminescence of the pesticide by means of the Multicommutation continuous-flow methodology. Small segments of the pesticide solution were sequentially alternated with segments of the solution for adjusting the suitable medium for the photodegradation. The required time of UV irradiation was obtained by stopped-flow during 150 s; then, the resulting solution formed alternated segments with the oxidizing solution containing 5 × 10−3 mol l−1 Ce(IV) in 0.6 mol l−1 nitric acid. The calibration range, from 2 μg l−1 to 50 mg l−1, resulted in a linear behaviour over the range 25 μg l−1 to 20 mg l−1 and fitting the equation: I = 4706x + 624 with a correlation coefficient of 0.9955. The limit of detection was 2 μg l−1 and the sample throughput 15 h−1. After testing the influence of a large series of potential interferents, the method was applied to different kinds of samples.  相似文献   

17.
A rapid and precise continuous-flow method is described for the determination of propranolol based on the chemiluminescence (CL) produced by its reaction with potassium permanganate in a sulphuric acid medium. The optimum chemical conditions for the chemiluminescence emission were investigated. Two manifolds were tested and their characteristics such as the length of the reactor, injection volume and flow rate were compared. When using the selected manifold, propranolol gives a linear calibration graph over the concentration range 1.0-17.5 mg l−1. The detection limit calculated as proposed by IUPAC was 70 ng ml−1 and the detection limit calculated as proposed by Clayton was 0.87 mg l−1. For analysis of 10 solutions of 10.0 mg l−1 propranolol, if error propagation theory is assumed, the relative error was 0.1%. The standard deviation (S.D.) for 10 replicate samples was 0.07 mg l−1. The method has been validated versus a published fluorimetric method.The present chemiluminescence procedure was applied to the determination of propranolol in simple British and Spanish pharmaceutical formulations, with excellent recoveries, as the determination is free from interference from common excipients. However, some drugs, such as hydralazine and bendroflumethizide which may also be present in the formulation, increase the emission intensity.  相似文献   

18.
A simple, fast chemiluminescence (CL) flow-injection (FI) method based on the reaction of luminol with KMnO4 in alkaline medium has been described for the direct determination of carbofuran. The method is based on the enhancing effect in the emission light from the oxidation of luminol produced in presence of carbofuran. The optimisation of instrumental and chemical variables influencing the CL response of the method has been carried out by applying experimental design, using the proposed flow-injection manifold. Under the optimal conditions, the CL intensity was linear for a carbofuran concentration over the range of 0.06-0.5 μg ml−1, with a detection limit of 0.02 μg ml−1. The method has been successfully applied to the determination of carbofuran residues in spiked water and lettuce samples.  相似文献   

19.
《Analytica chimica acta》2002,471(2):173-186
An automated and versatile sequential injection spectrofluorimetric procedure for the simultaneous determination of multicomponent mixtures in micellar medium without prior separation processes is reported. The methodology is based upon the segmentation of a sample slug between two different buffer zones in order to attain both an improvement of sensitivity and residual minimization for the whole species. Resolution of overlapping fluorescence profiles is achieved using a variable angle scanning technique coupled to multivariate least-squares regression (MLR) algorithms at both sample edges.The potentialities of the described methodology are illustrated with the spectrofluorimetric determination of four widespread pesticides with different acid-base properties; viz. carbaryl (CBL) (1-naphthyl-N-methylcarbamate), fuberidazole (FBZ) (2-(2′-furyl)benzimidazole), thiabendazole (TBZ) (2-(4′-thiazolyl)benzimidazole) and warfarin (W) (3-α-acetonylbenzyl)-4-hydroxycoumarin). Detection limits at the 3σ level were 3.9, 0.02, 0.03 and 10 μg l−1 for CBL, FBZ, TBZ and W, respectively at the maximum sensitivity pH. Dynamic ranges of 13-720 μg l−1 CBL, 0.10-14 μg l−1 FBZ, 0.19-60 μg l−1 TBZ and 0.05-5 mg l−1 W were achieved. Relative standard deviations (n=10) were 0.2% for 100 μg l−1 CBL and 2.4 μg l−1 FBZ, 0.7% for 8 μg l−1 TBZ and 1.0% for 1 mg l−1 W. The proposed automated methodology, which handles 17 samples/h, was validated and applied to spiked real water samples with very satisfactory results.  相似文献   

20.
A spectrophotometric method is reported for the determination of bismuth in pharmaceutical products using sequential injection analysis. Methylthymol blue (MTB) was used as a color forming reagent and the absorbance of the Bi(III)-MTB complex was monitored at 548 nm. The various chemical and physical variables that affected the reaction were studied. A linear calibration graph was obtained in the range 0.0-75.0 mg l−1 Bi(III) at a sampling frequency of 72 h−1. The reagent consumption was considerably reduced compared to conventional flow injection systems, as only 150 μl of MTB were consumed per run. The precision was very satisfactory (sr=0.5%, at 50.0 mg l−1 Bi(III), n=12) and the limit of detection, cL, was 0.250 mg l−1. The developed method was applied successfully to the analysis of various pharmaceutical products containing Bi(III). The relative errors er, were <1.5% in all cases and were evaluated by comparison of the obtained results with those found using atomic absorption spectrometry as the reference method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号