首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new procedure has been developed for chromium speciation in water by sequential injection analysis and flame atomic absorption spectrometry. The method involves the online retention of Cr(VI) anionic species and Cr(III) cationic species on alumina microcolumns, prepared by packing activated alumina in polytetrafluoroethylene tubes, followed by selective elution of Cr(VI) with 2 mol l−1 NH4OH and of Cr(III) with 0.2 mol l−1 HNO3. Studies were carried out on the effect of retention and elution conditions for both Cr species. The limit of detection values, established as the concentration corresponding to three times the standard deviation of blank measurements divided by the slope of the calibration line, achieved were 42 μg l−1 for Cr(VI) and 81 μg l−1 for Cr(III). The relative standard deviation of three independent determination of natural spiked samples were lower than 10% for concentration levels between 0.5 and 2 mg l−1 of Cr. The developed procedure was applied to the analysis of two effluent sewage waters, and results obtained compared well with those obtained by a batch procedure. Recovery studies on natural spiked samples provided results between 93 and 103% for Cr(VI) and from 100 to 106% for Cr(III) for samples spiked with single species. For samples spiked with both Cr(VI) and Cr(III), the average recoveries varied from 86 to 101% for Cr(VI) and from 91 to 117% for Cr(III).  相似文献   

2.
A flow injection (FI) method with flame atomic absorption spectrometry (FAAS) detection was developed for the determination and speciation of nitrite and nitrate in foodstuffs and wastewaters. The method is based on the oxidation of nitrite to nitrate using a manganese(IV) dioxide oxidant microcolumn where the flow of the sample through the microcolumn reduces the MnO2 solid phase reagent to Mn(II), which is measured by FAAS. The absorbance of Mn(II) are proportional to the concentration of nitrite in the samples. The injected sample volume was 400 μL with a sampling rate of analyses was 90 h−1 with a relative standard deviation better than 1.0% in a repeatability study. Nitrate is reduced to nitrite in proposed FI-FAAS system using a copperized cadmium microcolumn and analyzed as nitrite. The calibration curves were linear up to 20 mg L−1 and 30 mg L−1 with a detection limit of 0.07 mg L−1 and 0.14 mg L−1 for nitrite and nitrate, respectively. The results exhibit no interference from the presence of large amounts of ions. The method was successfully applied to the speciation of nitrite and nitrate in spiked natural water, wastewater and foodstuff samples. The precision and accuracy of the proposed method were comparable to those of the reference spectrophotometric method.  相似文献   

3.
Using octadecyl functional groups (C18) bonded to silica gel as sorbent and methanol as eluent, the flow injection sorbent extraction features of dialkyldithiophosphates (RO)2P(S)S as the chelating agent for cadmium, copper and lead was investigated in respect of the effects of pH, alkyl substituent group, reagent concentration and masking agent, with flame atomic absorption spectrometric detection. The elements are quantitatively extracted with the short-alkyl-chain reagents (R up to propyl) in acidic medium. The extractability decreases with the number of carbon atoms in the alkyl groups of the reagents and with the reagent concentration when the alkyl groups are larger than butyl, but masking agents increase the extractability. An explanation proposed for this effect is the formation of polynuclear chelates. Diethyldithiophosphate can be used for the selective determination of cadmium, copper and lead in digested solid environmental samples. With 20 s sample loading at 8.7 ml min−1, the enhancement factors are 35 for cadmium and copper or 26 for lead; the detection limits (3σ) are 0.8, 1.4 and 10.0 μg 1−1 for cadmium, copper and lead, respectively.  相似文献   

4.
Four solid-phase reagents have been tested for indirect determination of cyanide using flow injection analysis-flame atomic absorption spectrometry (FIA-FAAS). The method is based on insertion of aqueous cyanide solutions into an on-line Ag2X (where X are SO32−, Cr2O72−, C2O42− and CO32−) packed column (25%, m/m suspended on silica gel beads) and re-distilled water or sodium hydroxide are used as the carrier stream. The eluent containing the analyte as silver cyanide complexes, produced from reaction between Ag2X and cyanide, measured by flame atomic absorption spectrometry. The method is simple, fast and selective than other published FIA procedures. A relative standard deviation (R.S.D.) better than 1.12% was obtained in a repeatability study. The method was applied to the determination of cyanide in industrial electrolytic baths.  相似文献   

5.
A calibration method has been developed which is realised in the flow injection analysis (FIA) by the gradient technique. According to this method two transient peaks, one for a sample and the other for a sample with standard addition, are recorded and compared point by point in the entire defined time range. The analytical result is estimated on the basis of information gained about the local analyte concentrations in the sample zone. The method allows the results to be reliable when both the non-linear calibration dependence and the interference effect occur. As an example, calcium in synthetic samples containing silicon, phosphate, aluminium, vanadium and titanium, and also in iron ore sample, were determined by flame atomic absorption spectrometry (FAAS). It has been proved, that the method can be effective in overcoming even extremely strong interferences, providing analytical results with average accuracy equal to ca. 5% and with precision 2–3 times inferior to that obtained by conventional FI calibration.  相似文献   

6.
A robust flow injection (FI) on-line dilution system based on micro-sample introduction was developed for flame atomic absorption spectrometry (FAAS). Two computer programmed and stepper-motor driven syringe pumps were used for the precise and reproducible sample metering in micro-liters and carrier delivery. Factors, which might influence the performance of the system, such as sample matrix and carryover, were investigated. No inferior effects were observed with various matrices including 10% glycerol. Sample carryover effects were less than 0.4%, tested by analyzing a blank and a sample alternately. Dilution factors were decided and keyed in manually. The system was calibrated using a set of concentrated standard solutions for a given dilution factor. At a sampling frequency of 60 h−1, precisions were better than 2% R.S.D. (n=40) for dilution factors of 10-2000. The long-term stability of the system was examined by continuously running the system for a whole working day, and a precision of 2.6% R.S.D. (n=345) was obtained at a dilution factor of 1000. The system was verified by analyzing a standard copper alloy with a certified concentration of 57.4% Cu, resulting in a measurement solution with 574 mg l−1 Cu.  相似文献   

7.
Derya Kara 《Talanta》2009,79(2):429-545
Micelle-mediated extraction/preconcentration is incorporated on-line into a flow injection system used to determine low levels of Cd(II), Co(II), Cu(II), Mn(II), Ni(II), Pb(II) and Zn(II) present in various samples. The analyte is complexed with HBDAP (N,N′-bis(2-hydroxy-5-bromo-benzyl)1,2-diaminopropane). Under optimal conditions, a solution of 30% (m/v) NaCl and a sample solution containing 2.5 mL of 1% (m/v) sodium dodecyl sulfate (SDS), 0.5 mL of 1.8 × 10−3 M HBDAP and 2.5 mL of pH 8.5 borate buffer solution in 25 mL were pumped through the cotton filled mini-column; onto which the surfactant-rich phase containing the complex is collected. A solution of 0.5 M HNO3 in 50% acetone is used as the eluent. The limits of detection are (ng mL−1) Cd = 0.39, Cu = 3.2, Co = 7.5, Mn = 3.0, Ni = 3.4, Pb = 17.9 and Zn = 0.89 if the sample is allowed to flow for 30 s, but improved for extended preconcentration periods. Analysis of liquid and solid reference materials showed good agreement with the certified values. Complex formation constants between HBDAP and these metal ions were also determined potentiometrically.  相似文献   

8.
A direct solid sampling flame atomic absorption spectrometric procedure for trace determination of cadmium in biological samples has been developed. Test samples (0.05–2.00 mg) were ground and weighed into small polyethylene vials, which were connected to the device for solid sample introduction into a conventional air/acetylene flame. Test samples were carried as a dry aerosol to a quartz cell, placed between the burner and the optical path, which had a perpendicular entrance and a slit in the upper part. The atomic vapor generated in the flame produced a transient signal that was totally integrated within 1 s. The effect of operating conditions and the extent of grinding on the analytical signal were evaluated. Background signals were always low and a characteristic mass of 0.29 ng Cd was obtained. Calibration was performed using different masses of solid certified reference materials. Results obtained for certified and in-house reference materials were typically within the 95% confidence interval of the certified and/or reference value, and the precision, expressed as relative standard deviation, was between 3.8 and 6.7%. The proposed system is simple and it might be adapted to conventional atomic absorption spectrometers allowing the determination of Cd in more than 80 test samples per hour, excluding weighing.  相似文献   

9.
A simple and inexpensive procedure is proposed for the extension of the dynamic range of flame atomic absorption spectrometry measurements using on-line dilution. The proposed methodology is based on the use of a manifold with two coupled dilution chambers and a zone injection system. The samples are prediluted in a closed system which includes a variable-volume mixing chamber (10–120 ml) and two injection valves. The samples are injected through one of these valves, and the other is employed to take 100 μl of prediluted samples which are then passed through a new dilution chamber (volume 1–10 ml) and aspirated by the nebulizer of the instrument. A third injection valve mounted in the last part of the manifold is used for the direct injection of diluted standard solutions. Various dilution factors are obtained, ranging from 2 to 130 000 times, thus extending the analytical range of copper determination to more than 100 000 mg l−1.  相似文献   

10.
A flow injection system was developed for on-line sorbent extraction preconcentration and flame atomic absorption spectrometric determination of cadmium in natural water samples. The non-charged cadmium complex with diethyl-dithiophosphate (DDPA) was formed on-line in 0.1 mol L−1 HNO3 and retained on the hydrophobic poly-chlorotrifluoroethylene (PCTFE) sorbent material. The adsorbed complex was eluted with isobutyl methylketone (IBMK) and injected directly into the nebulizer via a flow compensation unit. All major chemical and flow parameters affecting the complex formation adsorption and elution as well as interference were studied and optimized. By processing 2.4 mL of sample, the enhancement factor was 39 and the sampling frequency was 50 h−1. For 30 s preconcentration time the detection limit was 0.3 μg L−1 and the relative standard deviation at 5.0 μg L−1 Cd concentration level was 2.9%. The calibration curve was linear in the range 0.8–40.0 μg L−1. The accuracy of the method was estimated by analyzing a certified reference material NIST-CRM 1643d (Trace elements in water). Good recoveries were obtained for spiked natural-water and waste-water samples. Correspondence: Aristidis N. Anthemidis, Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University, GR-Thessaloniki 54124, Greece  相似文献   

11.
The paper reports preparation and analytical features of a new Cu(II)-imprinted polymer, based on salen-OMe ligand 2,2′-[ethane-1,2-diylbis(nitrilo(E)methylylidene)]bis(6-allyl-4-methoxyphenol) and styrene-divinylbenzene matrix, as well as its application to on-line preconcentration and flame atomic absorption determination of copper. Sorbent beads (average diameter of 60-80 µm) were obtained using suspension polymerization technique and employed as a column filling. Copper sorption was the most effective at pH 6.8, whereas the highest elution effectiveness was observed when 0.5% HNO3 was applied. The sorbent exhibited good long-term stability and acid resistance. Enrichment factor (EF) of 12 was found for 60 s loading time and loading flow rate of 4 mL min− 1. EF value may be further increased by expanding the loading time and/or flow rate. Batch sorbent capacity in optimal pH conditions was found to be 0.16 mmol g− 1 (9.55 mg g− 1) of a dry polymer. Calcium(II) turned out to be the only significant interferent. Cadmium(II), silver(I), nickel(II), zinc(II) in concentrations lower than about 1 mg L− 1 did not disturb copper(II) preconcentration. Different calibration methods such as: set of standards method (SSM), standard addition method (SAM) and combinatory calibration method (CCM) were employed for copper(II) determination in tap water, spring mineral water and certified reference material. Analysis of EU-H-3 reference material confirmed good accuracy of the proposed method. Relative standard deviation (RSD) was 3.2 for standard addition method and 2.8% for set of standard calibration method. Detection limit for sample consumption 16 mL was 1.03 and 1.07 µgL-1 respectively.  相似文献   

12.
A method to determine iodide in infant formula samples by indirect atomic absorption spectrometry (IAAS) was developed. The iodide in solution resulting from an alkaline digestion (Na2CO3–NaOH) of the sample is precipitated with silver; the precipitate is redissolved by adding cyanide solution, and this solution is subjected to GF-AAS. Temperatures of 1000 and 2100°C were selected for the ashing and atomization steps, respectively, using a mixture of Pd and Mg(NO3)2 as a matrix modifier (at concentrations of 36 and 16 μg ml−1, respectively). The sensitivity, LOD, LOQ and characteristic mass obtained were, respectively, 1.12×10−2 l μg−1, 3.1 μg g−1 and 10.4 μg g−1 and 7.3 pg, referred to sample. The linear interval of concentrations extends up to 10 μg l−1 of iodide, with no need to use the standard addition method; the mean R.S.D. of data within this range is 3.4%, with 2.9% over the whole procedure. No interfering effects were observed among the foreign ions studied, and 100.0% was the mean analytical recovery achieved within the linear range of concentrations. The application of the method to seven real samples gave a mean content of 12.8 μg g−1 of iodide, as well as less than 3.1 μg g−1 in eight other samples.  相似文献   

13.
Ibrahim S.I. Adam 《Talanta》2009,77(3):1160-1164
A newly simple flow injection wetting-film extraction system coupled to flame atomic absorption spectrometry (FAAS) has been developed for trace amount of cadmium determination. The sample was mixed on-line with sodium diethyl dithiocarbamate and the produced non-charged Cd(II)-diethyl dithiocarbamate (DDTC) chelate complex was extracted on the thin film of diisobutyl ketone (DIBK) on the inner wall of the PTFE extraction coil. The wetting-film with the extracted analyte was then eluted by a segment of the cover solvent, and transported directly to the FAAS for evaluation. All the important chemical and flow parameters were optimized. Under the optimized conditions an enhancement factor of 35, a sample frequency of 22 h−1 and a detection limit of cL = 0.7 μg l−1 Cd(II) were obtained for 60 s preconcentration time. The calibration curve was linear over the concentration range 1.5-45.0 μg l−1 Cd(II) and the relative standard deviation, R.S.D. (n = 10) was 3.9%, at 10.0 μg l−1 concentration level. The developed method was successfully applied to cadmium determination in a variety of environmental water samples as well as waste-water sample.  相似文献   

14.
A robust flow injection (FI) on-line liquid-liquid extraction (LLE) preconcentration/separation system associated with a newly designed gravitational phase separator, coupled to flame atomic absorption spectrometry (FAAS) was developed. The performance of the system was illustrated for cadmium determination at the μg l−1 level. The non-charged cadmium complex with ammonium pyrrolidine dithiocarbamate (APDC) was extracted on-line into isobutyl methyl ketone (IBMK). The organic phase was effectively separated from a large volume of aqueous phase and is led into a 100 μl loop of an injection valve before its introduction into the nebulizer. The system was optimized and offered good performance characteristics with unlimited life time of phase separator, greater flow rate ratios and improved flexibility, as compared with other solvent extraction preconcentration systems. With a sampling frequency of 33 h−1, the enhancement factor was 155, the detection limit was 0.02 μg l−1, the relative standard deviation was 3.2% at 2.0 μg l−1 Cd concentration level and the calibration curve was linear over the concentration range 0.06-6.0 μg l−1. The accuracy of the proposed method was evaluated by analyzing a certified reference material of water and by recovery measurements on spiked samples. Finally, it was successfully applied to the analysis of tapwater, river and seawater samples.  相似文献   

15.
建立了流动注射在线同时分离富集,无火焰原子吸收法测定地球化学样品中金、铂、钯的分析方法。研究了联用技术并进行了吸附条件和解脱条件的优化实验。当采样频率为20样/h时,Au、Pt、Pd的富集倍数分别为43、37、41。Au、Pt、Pd的检出限(3σ)分别为5、16、9ng/L。将Au、Pt、Pd质量浓度分别为50、200、100ng/L的混合标准溶液平行测定7次,求得Au、Pt、Pd的相对标准偏差分别为3.6%、5.1%、4.7%。并对国家级标准样品进行了测定,其结果及精密度符合要求。  相似文献   

16.
Continuous ultrasound-assisted extraction has been coupled with preconcentration and flame atomic absorption spectrometry for the determination of cadmium and lead in mussel samples. Experimental designs were used for the optimisation of the leaching and preconcentration steps. The use of diluted nitric acid as extractant in the continuous mode at a flow rate of 3.5 ml min−1 and room temperature was sufficient for quantitative extraction of these trace metals. A minicolumn containing a chelating resin (Chelite P, with aminomethylphosphoric acid groups) was proved as an excellent material for the quantitative preconcentration of cadmium and lead prior to their flame atomic absorption detection. A flow injection manifold was used as interface for coupling the three analytical steps, which allowed the automation of the whole analytical process. A good precision of the whole procedure (2.0 and 2.3%), high enrichment factors (20.5 and 11.8) and a detection limit of 0.011 and 0.25 μg g−1 for cadmium and lead, respectively, were obtained for 80 mg of sample. The sample throughputs were ca. 16 and 14 samples h−1 for cadmium and lead, respectively. The accuracy of the analytical procedures was verified by using a standard reference material (BCR 278-R, mussel tissue) and the results were in good agreement with the certified values. The method was successfully applied to the determination of trace amounts of cadmium and lead in mussel samples from the coast of Galicia (NW, Spain).  相似文献   

17.
In this work, a simple preconcentration system, achieved by replacing the sample tip of the autosampler arm by a micro-column packed with Amberlite IRA-910 or silica gel chelating resin functionalised with 1,5-bis(di-2-pyridyl)methylene tbiocarbohydrazide (DPTH-gel), is developed for the determination of Sb(V) and total antimony, respectively. Different factors including pH of sample solution, ionic strength, concentration and volume of eluent, sample flow rate, sample loading time and matrix effects for preconcentration were investigated. The method has been applied to the determination of antimony species in different samples.  相似文献   

18.
A novel dual-syringe flow injection (DSFI) on-line column preconcentration system coupled to flame atomic absorption spectrometry (FAAS) has been developed for automatic trace metal determination in natural waters and biological samples. The proposed method was based on the on-line retention of Cd(II), Pb(II), Cu(II), Co(II) and Ni(II) ions onto the surface of a strong cation exchanger resin named HyperSepSCX, in a readily exchangeable micro-cartridge format and subsequent elution with HCl (2?mol?L?1) prior to flame atomization. The sorbent and the micro-cartridge exhibited high long term chemical and mechanical stability with fast kinetics for all analytes. All main chemical and hydrodynamic factors affecting the performance of the proposed method were studied thoroughly. For 15.0?mL sample volume, the enhancement factors were calculated as 92, 97, 93, 99 and 77 for Cd(II), Pb(II), Cu(II), Co(II) and Ni(II) respectively and the detection limits (3?s) were in the range between 0.14 and 2.1?µg?L?1. The precision (RSD) obtained was lower than 3.3% for all five metal ions with a sample throughput of 12?h?1. The developed method was evaluated by analyzing certified reference materials and spiked environmental natural water samples.  相似文献   

19.
A sensitive and simple solid-phase preconcentration procedure for enrichment of cadmium prior to analysis by flame atomic absorption spectrometry (FAAS) is described. The method is based on the adsorption of cadmium as CdI42− on naphthalene-methyltrioctylammonium chloride adsorbent, elution by nitric acid and subsequent determination by FAAS. The effect of pH, iodide concentration, sample flow rate, volume of the sample and diverse ions on the recovery of the analyte was investigated and optimum conditions were established. A preconcentration factor of 40 was achieved using the optimum conditions. The calibration graph was linear in the range 1-100 ng ml−1 cadmium in the initial solution. The detection limit based on the 3Sb criterion was 0.6 ng ml−1 and the relative standard deviations (RSD) were 3.9 and 1.05% for 5 and 40 ng ml−1, respectively (n=8). The method was successfully applied to the determination of cadmium added to river, tap and Persian Gulf water samples.  相似文献   

20.
Cadmium was continuously extracted with diluted nitric acid from legumes and dried fruit samples using a simple, rapid and continuous ultrasound-assisted extraction system. A minicolumn packed with a chelating resin (Chelite P, with aminomethylphosphoric acid groups) was placed between the extraction unit and the detector for cadmium preconcentration. The cadmium content in the acid extract was retained into the minicolumn, and elution was carried out with hydrochloric acid, with this trace metal continuously monitored by flame atomic absorption spectrometry. An experimental design (Plackett-Burman 26×3/16) was used to optimize the continuous leaching procedure and the preconcentration step. The method allowed a total sampling frequency of 10 and 14 samples per hour for legumes and dried fruit, respectively. The procedure displayed good precision (2.0 and 2.5%, respectively, expressed as relative standard deviations) for samples containing 0.202±0.005 g g–1 Cd (broad bean) and 0.239±0.004 g g–1 Cd (peanut). Detection limits of 0.014 g g–1 Cd for 60 mg of legume samples and 0.011 g g–1 Cd for 80 mg of dried fruit samples were obtained. The method was successfully applied to the determination of trace amounts of cadmium in legumes and dried fruit samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号