首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A sensitive optical method based on quantum dot (QD) technology is demonstrated for the detection of an important cancer marker, total prostate-specific antigen (TPSA) on a disposable carbon substrate surface. Immuno-recognition was carried out on a carbon substrate using a sandwich assay approach, where the primary antibody (Ab)-protein A complex covalently bound to the substrate surface, was allowed to capture TPSA. After the recognition event, the substrate was exposed to the biotinylated secondary Abs. After incubation with the QD streptavidin conjugates, QDs were captured on the substrate surface by the strong biotin-streptavidin affinity. Fluorescence imaging of the substrate surface illuminated the QDs, and provided a very sensitive tool for the detection of TPSA in undiluted human serum samples with a detection limit of 0.25 ng/mL. The potential of this method for application as a simple and efficient diagnostic strategy for immunoassays is discussed.  相似文献   

3.
Electrochemical detection method allowing to detect prostate-specific antigen (PSA), a biomarker of prostate cancer (PCa), with PSA glycoprofiling was applied in an analysis of PCa serum samples for the first time. Electrochemical impedance spectroscopy (EIS) as a label-free method with immobilized anti-PSA was applied for PSA detection and lectins to glycoprofile captured PSA on the same surface. A proper choice of blocking agent providing high selectivity of biosensor detection with the immobilized anti-PSA antibody was done. The biosensor could detect PSA down to 100 ag/mL with a linear concentration working range from 100 ag/mL up to 1 μg/mL, i.e. 10 orders of concentration magnitude and the sensitivity of (5.5 ± 0.2)%/decade. The results showed that a commercial carbo-free blocking solution was the best one, reducing non-specific binding 55-fold when compared to the immunosensor surface without any blocking agent applied, while allowing to detect PSA. The biosensor response obtained after addition of lectin (i.e. proportional to the amount of a particular glycan on PSA) divided by the biosensor response obtained after incubation with a sample (i.e. proportional to the PSA level in the sample) was applied to distinguish serum samples of PCa patients from those of healthy individuals. The results showed that Maackia amurensis agglutinin (MAA) recognizing α-2,3-terminal sialic acid can be applied to distinguish between these two sets of samples since the MAA/PSA response obtained from the analysis of the PCa samples was significantly higher (5.3-fold) compared to the MAA/PSA response obtained by the analysis of samples from healthy individuals. Thus, combined analysis of serological PSA levels together with PSA glycoprofiling of aberrant glycosylation of PSA (i.e. increase in the level of α-2,3-terminal sialic acid) has a potential to improve detection of PCa.  相似文献   

4.
Prostate specific antigen (PSA) is a valuable biomarker for early detection of prostate cancer, the third most common cancer in men. Ultrasensitive detection of PSA is crucial to screen the prostate cancer in an early stage and to detect the recurrence of the disease after treatment. In this report, microcontact-PSA imprinted (PSA-MIP) capacitive biosensor chip was developed for real-time, highly sensitive and selective detection of PSA. PSA-MIP electrodes were prepared in the presence of methacrylic acid (MAA) as the functional monomer and ethylene glycol dimethacrylate (EGDMA) as the cross-linker via UV polymerization. Immobilized Anti-PSA antibodies on electrodes (Anti-PSA) for capacitance measurements were also prepared to compare the detection performances of both methods. The electrodes were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM) and cyclic voltammetry (CV) and real-time PSA detection was performed with standard PSA solutions in the concentration range of 10 fg mL−1–100 ng mL−1. The detection limits were found as 8.0 × 10−5 ng mL−1 (16 × 10−17 M) and 6.0 × 10−4 ng mL−1 (12 × 10−16 M) for PSA-MIP and Anti-PSA electrodes, respectively. Selectivity studies were performed against HSA and IgG and selectivity coefficients were calculated. PSA detection was also carried out from diluted human serum samples and finally, reproducibility of the electrodes was tested. The results are promising and show that when the sensitivity of the capacitive system is combined with the selectivity and reproducibility of the microcontact-imprinting procedure, the resulting system might be used successfully for real-time detection of various analytes even in very low concentrations.  相似文献   

5.
The BioCD is a spinning-disc interferometric biosensor on which antibodies are immobilized to capture target antigens from biological samples. In this work, BioCDs measured the interferometric response to prostate-specific antigen (PSA). The ideal detection limit for PSA was determined using a BioCD with 12,500 printed target antibody spots with a corresponding number of reference protein spots. Statistical analysis projects the detection limit of PSA as a function of the number of spots included in the average. When approximately 10,000 spot pairs were averaged, the 3σ detection limit was 60 pg/ml in a 2 mg/ml simple protein background. A standard format for BioCD immunoassays uses 96 wells with 32 target spots paired with reference spots. In serum, the detection limit for this format was 1 ng/ml in 3:1 diluted female human serum using a sandwich assay with a nonfluorescent mass tag.  相似文献   

6.
《Chemistry & biology》1998,5(9):475-488
Background: The serine protease prostate-specific antigen (PSA) is a useful clinical marker for prostatic malignancy. PSA is a member of the kallikrein subgroup of the (chymo)trypsin serine protease family, but differs from the prototypical member of this subgroup, tissue kallikrein, in possessing a specificity more similar to that of chymotrypsin than trypsin. We report the use of two strategies, substrate phage display and iterative optimization of natural cleavage sites, to identify labile sequences for PSA cleavage.Results: Iterative optimization and substrate phage display converged on the amino-acid sequence SS(Y/F)YIS(G/S) as preferred subsite occupancy for PSA. These sequences were cleaved by PSA with catalytic efficiencies as high as 220–3100 M−1 s−1, compared with values of 2–46 M−1 s−1 for peptides containing likely physiological target sequences of PSA from the protein semenogelin. Substrate residues that bind to secondary (non-S1) subsites have a critical role in defining labile substrates and can even cause otherwise disfavored amino acids to bind in the primary specificity (S1) pocket.Conclusions: The importance of secondary subsites in defining both the specificity and efficiency of cleavage suggests that substrate recognition by PSA is mediated by an extended binding site. Elucidation of preferred subsite occupancy allowed refinement of the structural model of PSA and should facilitate the development of more sensitive activity-based assays and the design of potent inhibitors.  相似文献   

7.
The present study describes the development of a quantitative miniaturized single microparticle immunoassay. The main objective of the study was to evaluate the performance of a miniature heterogeneous immunoassay on a single microparticle in respect to assay kinetics, volume, and sensitivity, binding capacity of microparticles and sensitivity using europium(III) nanoparticle labels. The performance of the single microparticle assay of prostate-specific antigen (PSA) was investigated using different-sized microparticles (60-920 μm in diameter) and microtiter well as a solid-phase. Equilibration time of the assay was shown to be dependent in a linear manner on surface-to-volume ratio, i.e. larger surface-to-volume translated to a faster reaction. However, no correlation between PSA binding capacity and equilibration time was observed in these kinetic studies. Only moderate improvement in assay kinetics was found when PSA binding capacity was increased on a microparticle. Using europium(III) nanoparticle labels, 107 nm in diameter, coated with streptavidin a detection sensitivity of 30 ng l−1 (0.1 amol) was achieved in 1 μl total assay volume per microparticle. This was 50-fold higher compared to the same assay performed with intrinsically fluorescent europium(III) labels.  相似文献   

8.
Yue Zheng  Yan Luo 《Talanta》2008,77(2):809-814
A highly sensitive chemiluminescence immunosensor for the detection of prostate-specific antigen (PSA) was developed based on a novel amplification procedure with the application of enzyme encapsulated liposome. Horseradish peroxidase (HRP) encapsulated and antibody-modified liposome acts as the carrier of a large number of markers and specific recognition label for the amplified detection of PSA. In the detection of PSA, the analyte was first bound to the specific capture antibody immobilized on the microwell plates, and then sandwiched by the antibody-modified liposomes encapsulating HRP. The encapsulated markers, HRP molecules were released by the lysis of the specifically bound liposomes in the microwell with Triton X-100 solution. Then, the analyte PSA could be determined via the chemiluminescence signal of HRP-catalyzed luminol/peroxide/enhancer system. The “sandwich-type” immunoassay provides the amplification route for the PSA detection in ultratrace levels. The CL emission intensity exhibits dynamic correlation to PSA concentration in the range from 0.74 pg/ml to 0.74 μg/ml with readily achievable detection limit of 0.7 pg/ml.  相似文献   

9.
Taking advantage of the high-efficiency photocurrent response of bismuth oxychloride sensitized with gold nanoparticles (BiOCl−Au) in combination with the antigen-antibody biological recognition reaction, a convenient photoelectrochemical (PEC) immunoassay (model target: prostate-specific antigen; PSA) has been fabricated. In particular, the enhanced photocurrent response could be attributed to the enhanced optical absorption of visible light from surface plasmon resonance (SPR) effect of gold nanoparticles in the hierarchical structure of BiOCl layered. To realize the biological detection process, an immunoreaction was implemented between target PSA and alkaline phosphatase (ALP)-labeled anti-PSA antibodies. With the formation of ternary sandwich immunocomplex, the carried and loaded ALP catalysed the substrate ascorbic acid 2-phosphate (AAP) to generate ascorbic acid for increasing the photocurrent intensity of BiOCl−Au/FTO. Under optimum reaction time, the photocurrent peak intensity of BiOCl−Au/FTO increased with the increasing of target PSA concentration in the range of 0.01 ng/mL to 50 ng/mL with a limit of detection (LOD) down to 2.3 pg/mL. In the photocurrent control experiment, the photocurrent of BiOCl−Au/FTO was not only higher than that of BiOCl/FTO, but also showed greater changes in photocurrent under the same target PSA concentration. Impressively, the proposed split-type PEC immunoassay was applied to detect PSA concentration in human serum samples, giving acceptable and satisfactory accuracy compared with the gold standard PSA ELISA method.  相似文献   

10.
Kupstat A  Kumke MU  Hildebrandt N 《The Analyst》2011,136(5):1029-1035
Point-of-care testing (POCT) systems which allow for a sensitive, quantitative detection of protein markers are extremely useful for the early detection and therapy progress monitoring of cancer. However, currently commercially available POCT devices are mainly limited to the qualitative detection of protein markers. In this study we demonstrate the successive miniaturization of a sensitive and fast assay for the quantitative detection of prostate-specific antigen (PSA) using a well established and clinically approved homogeneous time-resolved fluoroimmunoassay technology (TRACE?) on a commercial plate-reader system (KRYPTOR?). Regarding the initial requirements for the development of POCT devices we applied a 30-fold assay volume reduction (150 μL to 5 μL) to achieve a reasonable lab-on-a-chip volume and a 24-fold and 120-fold excitation pulse energy reduction to achieve reasonable pulse energies for low-cost miniature excitation sources. Due to highly efficient optimization of key POCT parameters our miniaturized PSA assay achieved a 30% increased sensitivity and a 2-fold improved limit of detection compared to the standard plate-reader method. Our results demonstrate the successful implementation of key parameters for a significant miniaturization and for cost reduction in the clinically approved KRYPTOR? platform for protein detection. The technological alterations required are easy-to-implement and can be immediately adapted for more than 30 diagnostic protein markers already available for the KRYPTOR? platform. These features strongly recommend our assay format to be utilized in innovative, sensitive, quantitative POCT of protein markers.  相似文献   

11.
We describe a simple method to fabricate an array of polystyrene microbeads (PS μbeads) conjugated with an elastin-like polypeptide (ELP) on a glass surface using a removable polymer template (RPT). A thin layer of adhesive was spun-cast on glass and cured by UV radiation. Micropatterns of an RPT were then transferred onto the surface by microcontact printing. The adhesion of PS μbeads on the surface depended on the adhesion performance of the adhesive layer, which could be adjusted by irradiation time. An array of PS μbeads conjugated with ELP was used for a smart immunoassay of prostate-specific antigen (PSA), a cancer marker. By controlling the phase transition of ELP molecules, PSA molecules were selectively adhered or released from the bead surface. The selective and reversible binding of PSA molecules on the bead surface was characterized with fluorescence microscopy.  相似文献   

12.
Magnetic beads have served as a conventional bioassay platform in biotechnology. In this study, a fully automated immunoassay was performed using novel nano- and microbead-composites constructed by assembling nano-magnetic beads onto polystyrene microbeads, designated ‘Beads on Beads’. Nano-sized bacterial magnetic particles (BacMPs) displaying the immunoglobulin G (IgG)-binding domain of protein A (ZZ domain) were used for the construction of ‘Beads on Beads’ via the interaction of biotin-streptavidin. The efficient assembly of ‘Beads on Beads’ was performed by gradual addition of biotin-labeled BacMPs onto streptavidin-coated polystyrene microbeads. Approximately 2000 BacMPs were uniformly assembled on a single microbead without aggregation. The constructed ‘Beads on Beads’ were magnetized and separated from the suspension by using an automated magnetic separation system with a higher efficiency than BacMPs alone. Furthermore, fully automated detection of prostate-specific antigens was performed with the detection limit of 1.48 ng mL−1. From this preliminary assay, it can be seen that ‘Beads on Beads’ could be a powerful tool in the development of high-throughput, fully automated multiplexed bioassays.  相似文献   

13.
Lee  SangWook  Hosokawa  Kazuo  Kim  Soyoun  Jeong  Ok Chan  Lilja  Hans  Laurell  Thomas  Maeda  Mizuo 《Mikrochimica acta》2016,183(12):3321-3327
Microchimica Acta - The authors have developed a porous silicon (P-Si) based duplex antibody microarray platform for simultaneous quantitation of the biomarkers prostate-specific antigen...  相似文献   

14.
Prostate-specific antigen (PSA) is a serum glycoprotein overproduced by the prostate in prostate cancer (≥4 ng/mL in the bloodstream). An immunoassay for total PSA (tPSA) was developed using the ALYGNSA method to enhance capture antibody orientation and a limit of detection of 0.63 ng/mL was reported, a limit 15-fold lower than a commercial tPSA ELISA assay. This ALYGNSA assay, however, was performed using only buffer-based proteins and blocking agents (Mackness et al., Anal Bioanal Chem 396:681–686, 2010). To improve the clinical application of this system, a serum-based tPSA ALYGNSA was developed employing human serum. This assay also resulted in a limit of detection of 0.63 ng/mL of tPSA protein. The findings reported here provide support for the clinical application of this assay for diagnosis, progression, treatment, and possible recurrence of prostate cancer.  相似文献   

15.
Sensitive biomarker detection techniques are beneficial for both disease diagnosis and postoperative examinations. In this study, we report an integrated microfluidic chip designed for the immunodetection of prostate-specific antigens (PSAs). The microfluidic chip is based on the three-dimensional structure of quartz capillaries. The outlet channel extends to 1.8 cm, effectively facilitating the generation of uniform droplets ranging in size from 3 to 50 μm. Furthermore, we successfully immobilized the captured antibodies onto the surface of magnetic beads using an activator, and we constructed an immunosandwich complex by employing biotinylated antibodies. A key feature of this microfluidic chip is its integration of microfluidic droplet technology advantages, such as high-throughput parallelism, enzymatic signal amplification, and small droplet size. This integration results in an exceptionally sensitive PSA detection capability, with the detection limit reduced to 7.00 ± 0.62 pg/mL.  相似文献   

16.
We report complementary detection of prostate-specific antigen (PSA) using n-type In2O3 nanowires and p-type carbon nanotubes. Our innovation involves developing an approach to covalently attach antibodies to In2O3 NW surfaces via the onsite surface synthesis of phosphonic acid-succinylimide ester. Electronic measurements under dry conditions revealed complementary response for In2O3 NW and SWNT devices after the binding of PSA. Real-time detection in solution has also been demonstrated for PSA down to 5 ng/mL, a benchmark concentration significant for clinical diagnosis of prostate cancer, which is the most frequently diagnosed cancer.  相似文献   

17.
《Analytical letters》2012,45(18):2919-2928
Glycoprotein tumor markers are striking examples of heterogeneous analytes. The complexity of their structural forms in biological fluids is generally not reflected in reference materials. Therefore, they are not specified to consist of a distinct form, but rather to contain a mixture of molecular species. In this study, the question of the heterogeneity of free prostate-specific antigen (free PSA) is addressed in reference materials to define the immunoreactive molecular species and compare them to those in clinical serum. The reference material for free PSA and serum samples of subjects with benign prostatic hyperplasia and prostate cancer was examined for immunoreactivity to epitope I-specific anti-free PSA antibody using on-chip immunoaffinity chromatography in combination with mass spectrometry for the determination of bound forms. The mass spectra of the reference material for free PSA and clinical serum, obtained by on-chip immunoaffinity chromatography, were similar. The cluster of major free PSA-immunoreactive peaks at 28–29 kDa corresponding to the mature glycosylated PSA molecule overlapped in both analytes. However, the reference material displayed a more restricted pattern of low molecular mass species corresponding to nicked PSA fragments or PSA degradation products. The PSA concentration in clinical serum seems to consist of more species than equivalent concentrations of reference material. Regarding analysis of heterogeneous proteins, immunoaffinity capture combined with mass-specific detection represents a rapid means for selective detection of distinct molecular species, exceeding the analytical performance of current formats of immunoassays.  相似文献   

18.
Hwang KS  Lee JH  Park J  Yoon DS  Park JH  Kim TS 《Lab on a chip》2004,4(6):547-552
We report on a novel technique of resonant frequency shift measurement based on a nanomechanical cantilever with a PZT actuating layer for label-free detection of a prostate-specific antigen (PSA) in a liquid environment. The nanomechanical PZT thin film cantilever is composed of SiO(2)/Ta/Pt/PZT/Pt/SiO(2) on a SiN(x) supporting layer for simultaneous self-exciting and sensing; it was fabricated using a standard MEMS (micro electromechanical system) process. The specific binding characteristics of the PSA antigen to its antibody, which is immobilized with Calixcrown self-assembled monolayers (SAMs) on a gold surface deposited on a cantilever, are determined to a high sensitivity. For the bioassay in a liquid environment, a liquid test cell with a 20 microl volume reaction chamber has been fabricated, using a bonding technique between poly(dimethyl siloxane) (PDMS) bilayers. An observed trend of resonant frequency change with respect to time could be explained by the binding kinetics due to the Langmuir isotherm and diffusion and by the effects of a small volume reaction chamber. In the saturated regimes, the resonant frequency of the cantilever increased with increase of the PSA concentration in the reaction chamber, showing that the trend of the resonance frequency change was similar to that of the fluorescence results. The saturated resonance frequency shift of the cantilever was proportional to the PSA antigen concentration of analyte solution.  相似文献   

19.
Krejcova  Ludmila  Nguyen  Hoai Viet  Hynek  David  Guran  Roman  Adam  Vojtech  Kizek  Rene 《Chromatographia》2014,77(21):1425-1432

Considerable efforts have been devoted to the development of rapid and sensitive methods allowing the detection of viral nucleic acid. We herein describe an assay for identification of a specific influenza sequence. The suggested method was based on isolation using paramagnetic particles coupled with electrochemical detection of isolated product. Peptide nucleic acid (PNA) was used as a probe for hybridization and identification of the influenza-derived specific sequence. The use of PNA can show numerous benefits: PNA probe is not degradable by enzymes and the duplex of PNA with RNA/DNA is more thermostable and more resistant to pH changes than DNA/DNA or RNA/RNA duplexes. This PNA probe assay can be applied as a magnetically guidable tool for detection of DNA/RNA samples under different conditions.

  相似文献   

20.
NiCoBP-doped multi-walled carbon nanotube (NiCoBP–MWCNT) was first synthesized by using induced electroless-plating method and functionalized with the biomolecules for highly efficient electrochemical immunoassay of prostate-specific antigen (PSA, used as a model analyte). We discovered that the as-synthesized NiCoBP–MWCNT had the ability to catalyze the glucose oxidization with a stable and well-defined redox peak. The catalytic current increased with the increment of the immobilized NiCoBP–MWCNT on the electrode. Transmission electron microscope (TEM) and energy dispersive X-ray spectrometry (EDX) were employed to characterize the as-prepared NiCoBP–MWCNT. Using the NiCoBP–MWCNT-conjugated anti-PSA antibody as the signal-transduction tag, a new enzyme-free electrochemical immunoassay protocol could be designed for the detection of target PSA on the capture antibody-functionalized immunosensing interface. Experimental results revealed that the designed immunoassay system could exhibit good electrochemical responses toward target PSA, and allowed the detection of PSA at a concentration as low as 0.035 ng mL−1. More importantly, the NiCoBP-MWCNT-based oxidase mimetic system could be further extended for the monitoring of other low-abundance proteins or disease-related biomarkers by tuning the target antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号