首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A highly sensitive electrochemical amplification immunoassay for Salmonella typhi (S. typhi) determination has been developed for the first time by using a copper-enhanced gold nanoparticle label coupled with anodic stripping voltammetry. Monoclonal antibodies for S. typhi were first immobilized on polystyrene microwells and then captured by S. typhi bacteria. After an immunoreaction occurred, a polyclonal, antibody-colloidal gold conjugate was added to bind to the S. typhi bacteria. Next, a copper-enhancer solution containing ascorbic acid and copper (II) sulfate was added into the polystyrene microwells. The ascorbic acid was employed to reduce the copper (II) ions to copper (0), which was subsequently deposited onto the gold nanoparticle tags. After the copper was dissolved in nitric acid, the released copper ions were detected by anodic stripping voltammetry. The amount of deposited copper was related to the amount of gold nanoparticle tag present, which was controlled by the amount S. typhi attached to the polyclonal antibody-colloidal gold conjugate. Therefore, the anodic stripping peak current was linearly dependent on the S. typhi concentration over concentration range of 1.30 × 102 cfu/mL to 2.6 × 103 cfu/mL in a logarithmic plot, with a detection limit as low as 98.9 cfu/mL. The influences of the relevant experimental variables, such as the concentration of copper and the reaction time of S. typhi with antibody, were investigated. We also successfully applied this method to determine the presence of S. typhi in human serum. Our results are a step towards developing more sensitive and reliable nanoparticle immunoassays.  相似文献   

2.
An amperometric immunoassay for the determination of tumor necrosis factor alpha (TNFα) protein biomarker in human serum based on the use of magnetic microbeads (MBs) and disposable screen-printed carbon electrodes (SPCEs) has been developed. The specifically modified microbeads were magnetically captured on the working electrode surface and the amperometric responses were measured at −0.20 V (vs. Ag pseudo-reference electrode), upon addition of hydroquinone (HQ) as electron transfer mediator and H2O2 as the enzyme substrate. After a thorough optimization of the assay, extremely low limits of detection were achieved: 2.0 pg mL−1 (36 fM) and 5.8 pg mL−1 (105 fM) for standard solutions and spiked human serum, respectively. The simplicity, robustness and this clinically interesting LOD proved the developed TNFα immunoassay as a good contender for real clinical application.  相似文献   

3.
An electrochemical biosensor for the detection of microcystin has been developed based on the inhibition of the protein phosphatase 2A (PP2A) by this cyanobacterial toxin. The enzyme has been immobilised by entrapment using a poly(vinyl alcohol) azide-unit pendant water-soluble photopolymer (PVA-AWP). Electrode supports and immobilisation conditions have been optimised by colorimetric assays, the highest immobilisation yields being obtained with screen-printed graphite electrodes and the 1:2 PP2A:PVA ratio. Catechyl monophosphate (CMP), α-naphthyl phosphate (α-NP) and 4-methylumbelliferyl phosphate (4-MUP) have been used as phosphorylated substrates to monitor the protein phosphatase activity by electrochemical methods, the former providing the highest chronoamperometric currents at appropriate working potentials (+450 mV versus Ag/AgCl). Incubation with standard microcystin solutions has demonstrated the inhibition of the immobilised enzyme, proportional to the toxin concentration. The standard inhibition curve has provided a 50% inhibition coefficient (IC50) of 83 μg L−1, a limit of detection (LOD; 35% inhibition) of 37 μg L−1, and 100% inhibition at about 1000 μg L−1. Real samples of cyanobacterial blooms from the Tarn River (Midi-Pyrénées, France) have been analysed using the developed amperometric biosensor and the toxin contents have been compared to those obtained by a conventional colorimetric protein phosphatase inhibition (PPI) assay and high-performance liquid chromatography (HPLC). The results clearly justify the use of the developed amperometric biosensor as screening method for microcystin detection.  相似文献   

4.
Intact and permeabilized yeast cells were tested as the biorecognition elements for amperometric assay of formaldehyde (FA). For this aim, the mutant C-105 (gcr1 catX) of the methylotrophic yeast Hansenula polymorpha with a high activity of AOX was chosen. Different approaches were used for monitoring FA-dependent cell response including analysis of their oxygen consumption rate by the use of a Clark electrode, as well as assay of oxidation of redox mediator at a screen-printed platinum electrode covered by cells entrapped in Ca-alginate gel. It was shown that oxygen consumption rate of permeabilized cells reached its saturation at 4 mM of FA (23 °C). The detection limit was found to be 0.27 mM. In the presence of redox mediator 2,6-dichlorophenolindophenol (DCIP), the screen-printed platinum band electrode covered by permeabilized cells did not show any current output to FA. In contrast, well-pronounced amperometric response to FA was observed in the case of intact yeast cells in the presence of DCIP. It was shown that current output reached its maximum at 7 mM concentration of FA. The detection limit was found to be 0.74 mM. Obviously, it is necessary to perform a directed genetic engineering of the yeast cells to improve their bioanalytical characteristics in the corresponding biosensors.  相似文献   

5.
Acetaminophenol or paracetamol is one of the most commonly used analgesics in pharmaceutical formulations. Acetaminophen is electroactive and voltammetric mechanistic studies for the electrode processes of the acetaminophenol/N-acetyl-p-quinoneimine redox system are presented. Carbon nanotubes modified screen-printed electrodes with enhanced electron transfer properties are used for the study of the electrochemical-chemical oxidation mechanism of paracetamol at pH 2.0.Quantitative analysis of paracetamol by using its oxidation process (in a Britton-Robinson buffer solution pH 10.0) at +0.20 V (vs. an Ag pseudoreference electrode) on an untreated screen-printed carbon electrode (SPCE) was carried out. Thus, a cyclic voltammetric based reproducible determination of acetaminophen (R.S.D., 2.2%) in the range 2.5 × 10−6 M to 1 × 10−3 M, was obtained. However, when SPCEs are used as amperometric detectors coupled to a flow injection analysis (FIA) system, the detection limit achieved for paracetamol was 1 × 10−7 M, one order of magnitude lower than that obtained by voltammetric analysis. The repeatability of the amperometric detection with the same SPCE is 2% for 15 successive injections of 10−5 M acetaminophen and do not present any memory effect.Finally, the applicability of using screen-printed carbon electrodes for the electrochemical detection of paracetamol (i.e. for quality control analysis) was demonstrated by using two commercial pharmaceutical products.  相似文献   

6.
An amperometric biosensor system which uses screen-printed electrodes to simultaneously detect d-glucose and l-lactate has been developed and applied for simple and rapid determination of d-glucose and l-lactate levels in lactic fermenting beverages. The system was constructed from three-dimensionally layered electrodes. Taking into consideration the effects of easily oxidized substances contained in the samples, ferricyanide ions, which are electrochemically oxidized at a lower voltage, were chosen as a mediator. A linear relationship between steady-state current and concentration was found over a range of 1-100 mM (d-glucose) and 1-50 mM (l-lactate); the variation coefficients were 1.43% (n = 10) and 3.50% (n = 10) for the d-glucose and l-lactate sensors, respectively. When applied to lactic fermenting beverages, there was good agreement between the results obtained by the proposed sensing system and those obtained by the HPLC method. Using the proposed method, assays were completed within 5 min.  相似文献   

7.
Voltammetric enzyme immunosensors based on the employment of streptavidin modified screen-printed carbon electrodes (SPCEs) for the detection of rabbit IgG, as a model analyte, were described. Alkaline phosphatase (AP) and 3-indoxyl phosphate (3-IP) were used as the enzymatic label and substrate, respectively. The adsorption of streptavidin was performed by deposition of a drop of a streptavidin solution overnight at 4 °C on the pre-oxidized surface of the SPCEs. The analytical characteristics of these sensors were evaluated using biotin conjugated to AP.The immunosensor devices were based on a specific reaction of rabbit IgG with its biotinylated antibodies, which were immobilised on the modified screen-printed carbon electrodes through the streptavidin:biotin reaction. The immunosensors were used for a direct determination of AP labelled rabbit IgG, and for free rabbit IgG detection using a sequential competitive immunoassay. A calibration curve in the range of 5 × 10−11 to 1 × 10−9 M of rabbit IgG was obtained with a estimated detection limit of 5 × 10−11 M (7.0 ng/ml). These immunosensors were stable for 5 months if they were stored at 4 °C.  相似文献   

8.
A flow injection amperometric immunoassay system based on the use of screen-printed carbon electrode for the detection of mouse IgG was developed. An immunoelectrode strip, on which an immunosorbent layer and screen-printed carbon electrode were integrated, and a proposed flow cell have been fabricated. The characterization of the flow immunoassay system and parameters affecting the performance of the immunoassay system were studied and optimized. Amperometric detection at 0.0 V (versus Ag/AgCl) resulted in a linear detection range of 30-700 ng ml−1, with a detection limit of 3 ng ml−1. The signal variation among electrode strips prepared from variant batch did not exceed 8.5% (n=7) by measuring 0.5 μg ml−1 antigen standard solution.  相似文献   

9.
Gao Q  Wang W  Ma Y  Yang X 《Talanta》2004,62(3):477-482
The electrooxidation polymerization of phenothiazine derivatives, including azure A and toluidine blue O, has been studied at screen-printed carbon electrodes in neutral phosphate buffer. Both compounds yield strongly adsorbed electroactive polymer with reversible behavior and formal potentials closed to 0.04 V at pH 6.9. The modified electrodes exhibited good stability and electrocatalysis for NADH oxidation in phosphate buffer (pH 6.9), with an overpotential of more than 500 mV lower than that of the bare electrodes. Further, the modified screen-printed carbon electrodes were found to be promising as an amperometric detector for the flow injection analysis (FIA) of NADH, typically with a dynamic range of 0.5-100 μM.  相似文献   

10.
Biosensors for d-lactate and acetaldehyde were developed, based on screen-printed electrodes and NAD+-dependent dehydrogenases. Modification of screen-printed electrodes with the mediator Meldola Blue or with Meldola Blue-Reinecke salt resulted in sensitive, low cost and reliable NADH detectors. The biosensors were realised in two configurations, as disposable and reusable devices. Single-use sensors were obtained by simple deposition of enzyme and cofactor on the surface of mediator-modified electrodes. Chronoamperometry was used for the detection of substrates in small volumes of samples (25 μl). Immobilisation of dehydrogenases by entrapment in poly(vinyl alcohol) bearing styrylpyridinium groups (PVA-SbQ) allowed sensors to be obtained with sufficient operational stability. Amperometry in stirred solutions was the detection technique with biosensors for multiple use. The 3σ detection limits for acetaldehyde were 1 μM by amperometry and 6 μM by chronoamperometry and for d-lactate-0.03 μM and 0.05 μM for reusable and disposable biosensors respectively. The biosensors were applied in the analysis of some French and Romanian wines.  相似文献   

11.
《Electroanalysis》2005,17(22):2062-2067
A renewable amperometric immunosensor was developed for the specific detection of Salmonella typhi (S. typhi) using flagellin specific antibodies. An immunocomposite comprising paraffin, graphite, and capturing antibodies against S. typhi was used to construct the electrode. The detection technique involved a sandwich ELISA system. The assay conditions were optimized for loading of capturing antibody, incubation time for S. typhi cells, rotation speed and minimum amount of substrate needed. 1‐naphthyl phosphate was used as the substrate with an amperometric detection of its enzymatic hydrolysis product 1‐naphthol at a potential of +400 mV vs Ag/AgCl reference electrode. The minimum detection limit for S. typhi was found to be 105 cells/mL in 90 min, while ELISA detects 106 cells/mL in five hours.  相似文献   

12.
The preparation of novel Staphylococcus aureus (S. aureus) amperometric immunosensing designs based on the covalent immobilization of RbIgG at gold electrodes using the heterobifunctional cross-linker 3,3-dithiodipropionic acid di(N-succinimidyl ester) (DTSP), are reported. Two different competitive immunosensing configurations have been tested and compared. In the first one, protein A-bearing S. aureus cells and HRP-labelled antiRbIgG compete for immobilized RbIgG binding sites, while in the second case HRP-labelled protein A was used. In both cases, the evaluation of the developed immunosensors performance was accomplished through the monitoring at 0.00 V (vs. Ag/AgCl) of the catalytic current originated after addition of hydrogen peroxide, using tetrathiafulvalene as redox mediator entrapped at the modified electrode surface by cross-linking with glutaraldehyde. Optimization of variables concerning the composition of the immunosensors as well as the detection conditions was carried out in 0.1 M NaAc/0.1 M NaCl buffer of pH 5.6. The configuration that employed antiRbIgG-HRP resulted in better analytical characteristics, with a detection limit of 1.4 × 104 cells mL−1 for S. aureus cells submitted to wall lyses by ultrasonic treatment. This immunosensor design was also evaluated using gold screen-printed electrodes in order to reduce the analysis time and cost. In this case, a limit of detection of 3.7 × 102 cells mL−1 and a dynamic range from 1.3 × 103 to 7.6 × 104 cells mL−1 was obtained. A RSD value of 10.5% was found for the responses to 9.6 × 103S. aureus cells mL−1 obtained with seven different Au/SPEs-immunosensors. These disposable immunosensors were applied to the quantification of S. aureus in milk spiked at two concentration levels, 1.2 × 103 and 4.8 × 103 cells mL−1, with good recoveries.  相似文献   

13.
Botrytis cinerea is a plant-pathogenic fungus that produces the disease known as grey mould in a wide variety of agriculturally important hosts in many countries. This paper describes the development of an immunosensor coupled to carbon-based screen-printed electrodes (SPCE) modified with multi-walled carbon nanotubes (CNTs), which show a rapid and sensitive determination of B. cinerea in apple tissues (Red-delicious) using a competitive immunoassay method.Both the infected plant tissue sample and the B. cinerea-specific monoclonal antibody are allowed to react immunologically with the B. cinerea purified antigens immobilized on a rotating disk. Then, the bound antibodies are quantified by a horseradish peroxidise (HRP) enzyme labeled second antibodies specific to mouse IgG, using 4-tertbutylcatechol (4-TBC) as enzymatic mediators. The HRP, in the presence of hydrogen peroxide, catalyses the oxidation of 4-TBC to 4-tertbutyl o-benzoquinone. The electrochemical reduction back to 4-TBC is detected on SPCE-CNT at −0.15 V. The response current is inversely proportional to the amount of the B. cinerea antigens present in the fruit sample. The time consumed per assay was 30 min and the calculated detection limits for electrochemical method and the ELISA procedure are 0.02 and 10 μg mL−1, respectively. Moreover the intra- and inter-assay coefficients of variation were below 7%. This electrochemical immunosensor promises to be usefully suited to the detection and quantification of B. cinerea in apparently healthy plant prior to the development of the symptoms.  相似文献   

14.
Simple and sensitive DNA sensors have been developed on a base on graphite screen-printed electrodes modified with DNA and enzymes. Cholinesterase and peroxidase immobilized by treatment with glutaraldehyde were used for the detection of human DNA antibodies of systemic lupus erythematosus and bronchial asthma patients. The amperometric signal was measured at +680 mV versus Ag/AgCl for DNA-cholinesterase sensor and −150 mV for DNA-peroxidase sensor 5 min after the injection of acethylthiocholine and hydroquinone, respectively. The addition of serum samples results in the sharp decrease of the signal due to the formation of DNA-antibody adducts followed by the suppression of the access of substrate to the enzyme active site. Sulfonamide medicines suppress the DNA-antibody interaction due to the competitive binding along DNA minor grooves. DNA sensor labeled with peroxidase showed the linear calibration range of 5×10−9 to 7×10−5 mol l−1 of sulfamethoxazole and of 5×10−8 to 1×10−4 mol l−1 of sulfathiazole.  相似文献   

15.
Carboxylated multiwalled carbon nanotubes (MWCNT-COOH) were used to modify the working electrode surface of different screen-printed electrodes. The effect of this modification on the electrodic characteristics (double layer capacitance, electroactive area and heterogeneous rate constants for the electron transfer) was evaluated and optimized for the cyclic voltammetric determination of p-aminophenol. The enzymatic hydrolysis of p-aminophenylphosphate was employed for the quantification of alkaline phosphatase, one of the most important label enzymes in immunoassays. Finally, ELISA assays were carried out to quantify pneumolysin using this enzymatic system. Results obtained indicated that low superficial densities of MWCNT-COOH (0.03-0.06 μg mm−2) yielded the same electrodic improvements but with better analytical properties.  相似文献   

16.
A new, simple and effective amperometric acetylcholinesterase biosensor was developed using screen-printed carbon electrodes modified with carbon nanotubes (MWCNTs)–7,7,8,8-tetracyanoquinodimethane (TCNQ). The design of the biosensor was based on the supramolecular arrangement resulted from the interaction of MWCNTs and TCNQ. This arrangement was confirmed by spectroscopic and electrochemical techniques. Two different supramolecular arrangements were proposed based on different MWCNTs:TCNQ ratios. The synergistic effect of MWCNTs and TCNQ was, for the first time, exploited for detection of thiocholine at low potential with high sensitivity. The biosensor developed by immobilization of acetylcholinesterase (AChE) in sol–gel allowed the detection of two reference AChE inhibitors, paraoxon-methyl and chlorpyrifos with detection limits of 30 pM (7 ppt) and 0.4 nM (0.1 ppb), respectively. Efficient enzyme reactivation was obtained by using obidoxime.  相似文献   

17.
A simple and reliable technique has been developed for the construction of an amperometric acetylcholinesterase biosensor based on screen-printed carbon electrodes. For the first time, one-step modification using single-walled carbon nanotubes and Co phtalocyanine has been proposed to decrease the working potential and to increase the signal of thiocholine oxidation. The biosensor developed made it possible to detect 5-50 ppb of paraoxon and 2-50 ppb of malaoxon with detection limits of 3 and 2 ppb, respectively (incubation 15 min). The biosensor showed high reproducibility when measurements of the substrate and inhibitor were performed (R.S.D. about 1% and 2.5%, respectively). The reliability of the inhibition measurements was confirmed by testing spiked samples of sparkling and tape waters.  相似文献   

18.
Screen-printed carbon electrodes have been modified with tetrathiafulvalene and sulfite oxidase enzyme for the sensitive and selective detection of sulfite. Amperometric experimental conditions were optimized taking into account the importance of quantifying sulfite in wine samples and the inherent complexity of these samples, particularly red wine. The biosensor responds to sulfite giving a cathodic current (at +200 mV vs screen-printed Ag/AgCl electrode and pH 6) in a wide concentration range, with a capability of detection of 6 μM (α = β = 0.05) at 60 °C. The method has been applied to the determination of sulfite in white and red samples, with averages recoveries of 101.5% to 101.8%, respectively.  相似文献   

19.
This paper presents the construction of amperometric biosensors for the highly sensitive detection of carbamate insecticides based on the inhibition of acetylcholinesterase (AChE). This enzyme was immobilised by entrapment in an optimised sol-gel matrix on TCNQ-modified screen-printed electrodes. The enzyme activity was estimated by measuring the thiocholine produced by the enzymatic hydrolysis of the acetylthiocholine using TCNQ as mediator. Wild and genetically engineered AChEs from Drosophila melanogaster (Dm) were chosen for their high sensitivity towards insecticides, which substantially improves the LOD compared with cholinesterases from other sources. The wild type and three mutant enzymes were tested against three carbamate insecticides: carbaryl, carbofuran and pirimicard. The best LOD were obtained with the Y370A mutant for carbaryl (1 × 10−8 M), the E69W mutant for pirimicarb (2 × 10−8 M) and the I161V mutant for carbofuran (8 × 10−10 M). The biosensors were applied to the analysis of two potable water samples.  相似文献   

20.
F.J. Rawson  J. Xu  P.R. Fielden  J.P. Hart 《Talanta》2009,77(3):1149-723
The present study demonstrated for the first time that screen-printed carbon microband electrodes fabricated from water-based ink can readily detect H2O2 and that the same ink, with the addition of lactate oxidase, can be used to construct microband biosensors to measure lactate. These microband devices were fabricated by a simple cutting procedure using conventional sized screen-printed carbon electrodes (SPCEs) containing the electrocatalyst cobalt phthalocyanine (CoPC). These devices were characterised with H2O2 using several electrochemical techniques. Cyclic voltammograms were found to be sigmoidal; a current density value of 4.2 mA cm−2 was obtained. A scan rate study revealed that the mass transport mechanism was a mixture of radial and planar diffusion. However, a further amperometric study under quiescent and hydrodynamic conditions indicated that radial diffusion predominated. A chronoamperometric study indicated that steady-state currents were obtained with these devices for a variety of H2O2 concentrations and that the currents were proportional to the analyte concentration. Lactate microband biosensors were then fabricated by incorporating lactate oxidase into the water-based formulation prior to printing and then cutting as described. Voltammograms demonstrated that lactate oxidase did not compromise the integrity of the electrode for H2O2 detection. A potential of +400 mV was selected for a calibration study, which showed that lactate could be measured over a dynamic range of 1-10 mM which was linear up to 6 mM; a calculated lower limit of detection of 289 μM was ascertained. This study provides a platform for monitoring cell metabolism in-vitro by measuring lactate electrochemically via a microband biosensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号